The Economics of Attribute-Based Regulation: Theory and
Evidence from Fuel-Economy Standards

Koichiro Ito James M. Sallee*
Boston University and NBER University of Chicago and NBER

September 22, 2014

Abstract

This paper analyzes “attribute-based regulations,” in which regulatory compliance depends
upon some secondary attribute that is not the intended target of the regulation. Such policies
have the potential benefit of harmonizing marginal costs of regulatory compliance across firms,
but also create perverse incentives to distort the attribute upon which compliance depends. We
develop a theoretical framework that characterizes the welfare implications of attribute-basing,
including its potential benefits and costs. We then test our theoretical predictions by exploiting
quasi-experimental variation in Japanese fuel economy regulations, which provide key empirical
advantages over data from other countries. We exploit the fact that the fuel-economy targets are
downward-sloping step functions of vehicle weight. Our bunching analysis reveals large distor-
tions to vehicle weight that were induced by the policy. We then leverage panel data on vehicle
redesigns to empirically investigate the welfare implications of attribute-basing, including both
potential benefits and likely costs. This latter analysis concerns a “double notched” policy—
vehicles are eligible for an incentive if they are above a step function in the two-dimensional fuel
economy by weight space. We develop a new method for analyzing such double notched policies
and use it to conduct the welfare analysis of alternative policy designs. Our results show that
attribute-basing is an imperfect substitute for a fully efficient policy because it only partially
equalizes the marginal compliance costs and creates unnecessary distortions to the attribute.
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1 Introduction

The goal of this paper is to advance economists’ understanding of “attribute-basing,” which is a
common feature of policies aimed at correcting externality-related market failures. An attribute-
based regulation is a regulation that aims to change one characteristic of a product related to the ex-
ternality (the “targeted characteristic”), but which takes some other characteristic (the “secondary
attribute”) into consideration when determining compliance. For example, Corporate Average Fuel
Economy (CAFE) standards in the United States recently adopted attribute-basing. Figure 1 shows
that the new policy mandates a fuel-economy target that is a downward-sloping function of vehicle
“footprint”—the square area trapped by a rectangle drawn to connect the vehicle’s tires.! Under
this schedule, firms that make larger vehicles are allowed to have lower fuel economy. This has the
potential benefit of harmonizing marginal costs of regulatory compliance across firms, but it also
creates a distortionary incentive for automakers to manipulate vehicle footprint.

Attribute-basing is used in a variety of important economic policies. Fuel-economy regulations
are attribute-based in China, Europe, Japan and the United States, which are the world’s four
largest car markets. Energy efficiency standards for appliances, which allow larger products to
consume more energy, are attribute-based all over the world. Regulations such as the Clean Air
Act, the Family Medical Leave Act, and the Affordable Care Act are attribute-based because they
exempt some firms based on size. In all of these examples, attribute-basing is designed to provide
a weaker regulation for products or firms that will find compliance more difficult. This can both
improve equity and enhance efficiency by equalizing marginal costs of compliance across actors,
but it will generally come at the cost of distortions in the choice of the attribute upon which the
regulation is based.

Despite the ubiquity of attribute-based policies, economists lack a common microeconomic
framework for analyzing its welfare consequences, both theoretically and empirically. In this paper,

we develop a theoretical framework that characterizes the welfare implications of attribute-basing.?

!Under CAFE, firms must meet the attribute-based target on average. Not every vehicle must be in compliance.

2The real world attribute-based policies that we discuss here appear to be motivated by the goal of compliance
cost equalization, and this motivation is therefore our focus. Another potential motivation for attribute-basing is
to regulate secondary attributes when policymakers cannot directly target the externality. That is, if the targeted
characteristic is imperfectly related to the externality, and the secondary attribute is correlated with the external-
ity, conditional on the targeted characteristic, then optimal policy may involve attribute-basing. We discuss this
alternative rationale for attribute-basing further below, though we do not model it explicitly.



Figure 1: Example of an Attribute-Based Regulation: 2012 U.S. CAFE standards
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As of 2012, the U.S. Corporate Average Fuel Economy (CAFE) standards mandate a fuel-
economy target that is a downward-sloping function of vehicle footprint. The flat equivalent
is the EPA’s estimate based on the distribution of footprint in current fleet. Prior to 2011, the
CAFE standard was a flat standard at 27.5 mpg. The firm specific target values for Ford and
Toyota based on model year 2011 average footprint is labeled, as are three individual models.
All data taken from the Federal Register, 40 CFR Part 85.

We then test our theoretical predictions by exploiting quasi-experimental variation in Japanese
fuel economy regulations, which provide several key empirical advantages over data from other
countries, including the United States and the European Union. Finally, we leverage panel data on
vehicle redesigns to empirically investigate the welfare implications of attribute-basing, including
both potential benefits and likely costs. This final step develops a new methodology for analyzing
what we call “double notched” policies.

In the theory section, we develop a framework that translates attribute-based regulations
(ABRs) into more familiar microeconomic incentives. We demonstrate that policies like CAFE
can be thought of as creating a pair of implicit taxes in separate “markets” for the targeted char-
acteristic and the secondary attribute. These wedges are proportional to each other and scaled

by the slope of the compliance function with respect to the attribute. In many circumstances,



the implicit tax or subsidy for the secondary attribute is purely distortionary. The distortionary
incentive changes the level of the attribute and creates welfare losses that are directly analogous
to the deadweight loss from distortionary taxation. These distortions, which constitute the main
cost of attribute-based policies, are greater as the attribute is more elastic with respect to policy
incentives. This theoretical prediction motivates our empirical analysis, in which we show that
attribute-based standards do indeed create large distortions in vehicle weight, which implies large
welfare losses, in the Japanese automobile market.

Attribute-based regulation may also have benefits. Our model emphasizes that attribute-basing
may improve efficiency by equalizing the marginal costs of regulatory compliance. To see this,
consider the two cars labeled in Figure 1, the Accord and the Jetta. If both cars were forced to
meet the same flat standard (the dashed line in the figure), the marginal cost of compliance would
likely be higher for the Accord than the Jetta because the Accord must make a much larger change
in its fuel economy. If both cars were instead required to meet the attribute-based standard, their
marginal costs of compliance would likely be much more similar because each require about the same
improvement in fuel economy. Equalization of marginal compliance costs is efficiency enhancing;
it is equivalent to equalizing the marginal cost of providing a positive (or mitigating a negative)
externality associated with the targeted characteristic. Our theory formalizes this intuition, and
our empirical analysis illustrates it by simulating compliance costs under a flat standard versus an
attribute-based standard in the Japanese automobile market.?

The example of the Accord and the Jetta points to potential benefits of ABR, but these may
not be realized. For example, in practice, CAFE does not require each individual product to
comply with the standard. Rather, an entire firm’s fleet must on average comply. Moreover, since
2012, firms that exceed the standard are able to sell their “excess compliance” to other firms.
This implies that marginal compliance costs can be harmonized through a trading market, which
obviates the need for ABR. We also show that when such a compliance trading scheme is not
available, attribute-basing has a role in equalizing marginal compliance costs but is an imperfect
substitute for compliance trading. Attribute-basing can only equalize compliance costs to the degree

that the attribute predicts marginal costs. In addition, attribute-basing induces distortions in the

3Below, we also discuss additional considerations that may explain the use of attribute-basing in practice, including
distributional goals, technological spillovers and additional distortions due to imperfect competition, though we do
not formally model them.



attribute unless the attribute is perfectly unresponsive to policy incentives. Thus, for policies
like minimum energy-efficiency standards for appliances, attribute-based regulation provides an
efficiency improvement over a flat standard, but there is yet room for welfare improvement if
compliance trading schemes can be implemented.

In the empirical analysis, we exploit quasi-experimental variation in Japanese fuel-economy
regulations, where fuel economy targets are decreasing step functions of vehicle weight. For testing
our theoretical predictions about attribute-basing, the Japanese regulation offers three advantages,
which are absent in the E.U. and U.S. contexts. First, the Japanese attribute-based fuel-economy
regulation has been used for more than three decades, which provides us with a long analysis
window. Second, there was a policy change during our sample period, which enables us to use
panel variation. Third, the regulation features a “notched” compliance schedule—the requisite fuel
economy for a vehicle is a decreasing step function of vehicle weight. Automakers therefore have
a large incentive to increase vehicle weight only up to key thresholds where the mandated fuel
economy drops discretely.

This notched policy schedule motivates our first empirical approach, which uses cross-sectional
data to demonstrate that there is significant “bunching” (excess mass) in the distribution of vehi-
cle weight around regulatory thresholds. Using methods developed in Saez (1999, 2010); Chetty,
Friedman, Olsen, and Pistaferri (2011) and Kleven and Waseem (2013) to quantify the bunching in
weight, we estimate that 10% of Japanese vehicles have had their weight increased in response to
the policy. Among the affected vehicles, we estimate that weight rose by 110 kilograms on average.
This not only works against the goal of petroleum conservation (because heavier cars are less fuel
efficient), but also exacerbates accident-related externalities (because heavier cars are more dan-
gerous to non-occupants). Our back-of-the-envelope estimate based on the value of a statistical life
and estimates of the relationship between fatalities and vehicle weight suggests that this weight
increase creates around $1 billion of deadweight loss per year in the Japanese car market. Our
evidence speaks directly not only to the substantial automobile market in Japan, which includes
roughly 5 million units sold per year, but also to the world’s largest car market, China, and the
European Union, both of which feature weight-based fuel-economy regulations.

We also exploit panel variation created by a policy change during our sample period. In 2009, the

Japanese government introduced a model-specific (rather than corporate average) subsidy for vehi-



cles that exceeded a weight-based fuel economy threshold. This policy creates a “double notched”
policy; eligibility requires that each model be above a step-function in fuel economy by weight
space. Vehicles that are modified in order to become eligible for the subsidy reveal information
about the relative costs of manipulating weight versus fuel economy. We use this revealed pref-
erence information and a discrete choice model to estimate the cost of modifying fuel economy
and weight, leveraging quasi-experimental variation in incentives due to differences in the initial
position of each model vis-a-vis the double-notched schedule.

We use these cost estimates to illustrate the welfare implications of attribute-basing by simu-
lating three alternative policy scenarios—attribute-based fuel-economy standards, a flat standard
without compliance trading, and a flat standard with compliance trading. The simulation shows
key insights about potential benefits and limitations of attribute-based regulation. When com-
pliance trading is disallowed, attribute-based standards improve efficiency as compared to a flat
standard because attribute-basing helps equalize marginal compliance costs. However, this benefit
is partially offset by distortions in the attributes created by the regulatory incentive. In addition,
consistent with our theory, we find that attribute-basing is an imperfect substitute for compliance
trading because the marginal compliance costs are not perfectly correlated with the attribute, which
results in only partial equalization of the marginal compliance costs.

The findings from our theoretical and empirical analysis have implications for a variety of eco-
nomic policies. The world’s four largest car markets have attribute-based fuel-economy regulations,
and nearly all wealthy countries have attribute-based energy-efficiency regulations for appliances.*
Such regulations include not only minimum efficiency regulations, but also attribute-based ratings
systems for consumer-facing product labels.> Subsidies or taxes, such as the hybrid vehicle tax
in the United States, or vehicle registration fees in Europe, are also frequently attribute-based.
Attribute-basing is also prominent in regulations outside of energy efficiency. For example, firms
below a certain size (the attribute) are exempted from some policies, including provisions as diverse

as the Clean Air Act, the Affordable Care Act, the Family Medical Leave Act, livestock regulations,

4For example, a refrigerator in the United States must meet a minimum efficiency that depends on its fresh food
capacity and frozen food capacity, as well as its door type (French or not), the location of its freezer (top or bottom),
and whether or not it has through-the-door ice.

5For example, in Europe, automobiles and appliances are given attribute-based letter grades. In Japan, appliances
are given one through five stars, based on an attribute-based criterion. And, in the United States, energy labels for
both automobiles and appliances include figures that compare the product’s energy consumption relative to products
in the same “class”.



and securities regulations. The stringency of other policies, such as liability for worker safety and
unemployment insurance tax rates, also depend on firm size.

While there is little to no literature on attribute-basing in energy efficiency policies, there are
a few papers, both empirical and theoretical, on regulations that exempt firms based on size. The
empirical literature has found (mixed) evidence of distortions, but these papers have not combined
empirical estimates with a theoretical framework that allows for welfare analysis, as we do here.5
Relative to the theoretical literature, our paper differs critically by modeling attribute-based policies
that are motivated by heterogeneity in compliance costs, rather than by imperfect targeting of the
externality, as in Brock and Evans (1985) and Kaplow (2013), or by per-firm administrative costs, as
in Dharmapala, Slemrod, and Wilson (2011). Moreover, our paper provides a common framework
that unites these previous studies and illustrates how the literature on small firm exemptions relates
to other policies, like fuel-economy regulation.

Even fewer papers consider attribute-basing in energy-efficiency policies. There is a substantial
literature on CAFE, including key contributions in Goldberg (1998), Kleit (2004), Gramlich (2009),
Anderson and Sallee (2011), Jacobsen (2013a), and Whitefoot, Fowlie, and Skerlos (2013), but these
papers study CAFE before the introduction of attribute-basing. Thus, we contribute to the broader
fuel-economy literature by adding our theoretical framework and empirical findings to the small
number of papers that do consider attribute-basing. This includes Whitefoot and Skerlos (2012),
which uses engineering estimates of design costs and a discrete-choice economic model to predict
how much automakers will manipulate footprint in response to CAFE. That study concludes that
an increase in footprint will likely be a major source of adjustment, but, unlike our paper, it does
not analyze data from a period when attribute-based standards are actually in place. That is, the
paper forecasts responses based on an engineering model, rather than studying revealed preference,
as we do here. Our paper is the first to develop a full theoretical model of attribute-basing, though
Gillingham (2013) does note the potential implicit incentive for the expansion of footprint in a

broader discussion of CAFE policies, which relates to our first proposition. Also, Jacobsen (2013b)

5For example, the Clean Air Act, which restricts economic activity within counties that have exceeded pollution
limits, exempts sufficiently small firms. Becker and Henderson (2000) do not find evidence that firms manipulate size
to avoid the regulation, though they find that firms locate in unregulated counties. Gao, Wu, and Zimmerman (2009)
find suggestive evidence that firms reduced size in order to avoid security regulations imposed by the Sarbanes-Oxley
bill. Sneeringer and Key (2011) find evidence that firms downsize livestock operations in order to stay under a size
threshold that leads to milder federal regulation.



addresses the safety impacts of footprint-based standards in the United State, which we touch on
below.

Our work also relates to the literature on notched corrective taxation, which began with Blinder
and Rosen (1985) and includes prior analysis of automobile fuel economy in Sallee and Slemrod
(2012), as well as to the broader bunching literature cited above, which is surveyed in Slemrod
(2010). Our panel analysis differs from existing work in this area by considering a double notch

(i.e., a notch in two coordinates), which is, to the best of our knowledge, new to the literature.

2 Theory

The goal of our theoretical model is to characterize the welfare consequences of attribute-based
regulation and provide theoretical predictions that motivate our empirical analysis. We define
an ABR as any policy, denoted S(a,e), that ostensibly targets some characteristic, e, but which
takes another characteristic, a, into account when determining policy treatment.” For example,
CAFE targets fuel economy (e), but the CAFE fine structure (S(a,e)) depends on footprint (a).
Our model presumes that regulation is motivated by an externality that is directly caused by the
characteristic e, but we discuss below the implications of the realistic alternative in which e is
imperfectly correlated with the externality in question (e.g., fuel economy itself does not cause an
externality; greenhouse gas emissions do).

For energy efficiency policies, ABR mandates some minimum efficiency level that each product
(or some group of products jointly) must obtain in order to be sold or to avoid fines. We write this
version of ABR as an inequality constraint, e > o(a) + x, where o(a) is some function of a that
determines what minimum efficiency is required of a particular product and & is a constant. We
call o(a) + k the target function, and we refer to its slope, denoted ¢’(a), as the policy’s attribute
slope. The solid line in Figure 1 is the target function for CAFE, and its slope is CAFE’s attribute
slope, which is negative, so that ¢’(a) < 0. The function o(a) is general, so it could of course
include a constant, which obviates the need to write k separately. But, we assume that o(0) = 0

and add the constant term x for expositional reasons; much of our analysis concerns cases where

"We use the term “ostensibly” because the very nature of ABR is that it creates implicit incentives for a as well
as e, so that one might say it is a regulation pertaining to both characteristics. This distinction is thus somewhat
semantic, but it is nevertheless clear in the cases that we have in mind—e.g., fuel-economy regulations are intended
to regulate fuel economy rather than size.



o'(a) = 0 for all values of a, in which case the policy reduces strictly to the choice of the constant
K.

Consumers have unit demand for a durable good with variable characteristics a and e. They
receive flow utility F,(an,ey,) from the durable, where n = 1,..., N indexes different types of con-
sumers. Each type may have a distinct flow utility function F;,, which allows for taste heterogeneity,
but all consumer types face the same price schedule, denoted P(ay,ey,). We assume that a and e
are both goods with decreasing marginal utility; F), is increasing and concave in each argument.
For expositional ease, we assume that there are equal numbers of each type n and that the planner
puts equal weight on all utilities, which obviates the need for weighting notation.

Consumers have exogenous income I, which they spend on the durable and a numeraire z.
The numeraire has unit price, and, for simplicity, we assume that utility U is quasilinear in the
durable and the numeraire and that the numeraire provides a constant marginal utility, which is
normalized to 1. The consumer’s payoff is written as Uy, (an,en) = Fn(an,e,) + x,. When the
consumer faces a regulatory policy that enforces a minimum, they choose a,, e, and x, so as to
maximize U, subject to their budget constraint (I, > P(ay, e,)+x,) and the regulatory constraint
(en > o(an) + k).

On the supply side, we assume perfect competition. Specifically, we assume that there is a
constant marginal cost of the quantity produced of a good with attribute bundle (a, e), which we
denote as C(a,e), and that there are no fixed costs or barriers to entry. This means that (in the
absence of policy) a consumer will be able to purchase any bundle of attributes (a,e) and pay
P(a,e) = C(a,e). Furthermore, because there are no profits in equilibrium due to free entry and
the lack of fixed costs, firms will make no profits; thus consumer surplus will be a sufficient welfare
statistic. We assume that C(a,e) is rising and convex in both attributes. The assumption of
perfect competition abstracts from a variety of important issues, and we discuss them below after
establishing our baseline results.

The planner’s problem differs from the individual’s in summing across the different types of
consumers and in recognizing the existence of an externality. We model the external benefits
(or damages) as depending only on the sum total of e chosen by the consumers. This implies
that benefits (or damages) depend directly on the characteristic e, and thus policy can directly

target the externality. This assumption matters for policy design (it implies that the first-best is



obtainable in some cases), and we discuss alternatives below. Note that our assumptions about the
externality also implies that the externality does not depend on who chooses e.® For expositional
ease, we assume that total external damages are linear in aggregate e, denoted as ¢ 27]:[:1 én, With
¢ being the marginal external effect of e. For energy efficiency, ¢ will be positive.

Before proceeding to theoretical results, it is useful to write out the consumer’s and planner’s
optimization problems and compare their respective first-order conditions. The planner’s objective
is to maximize social welfare W, which is the simple sum of private utilities over types, plus the

externality:

N N
(IlllaXW = Z{Fn(an,en) — Clan, en) +In}+¢Zen. (1)
men n=1 n=1

The first-order conditions of equation 1, which characterize the first-best allocation of resources,
require (1) that the marginal flow utility of a, equals the marginal cost of producing a,, for each
consumer type <g%z = % Vn=1,.., N) and (2) that the marginal flow utility of e,, is less than

the marginal cost of producing e,, by the size of external benefits ¢, for each consumer type

_¢_ OF oCc __ _ OFn ocC
— Oep der — T Oen den

). These are standard conditions. Because there is no exter-
nality associated with a,, its allocation is chosen irrespective of the externality in the first-best.
The first-best allocation of e, involves a wedge, equal to marginal external benefits, which is com-

mon across all products. In the terminology of pollution mitigation, g]‘: “— % is the marginal cost

of abatement for type n. At the first best, these marginal costs must be equalized across all types.

For the consumer, we substitute the budget constraint into the optimization problem to elim-
inate the numeraire, substitute P(a,e) = C(a,e) based on our supply side assumption, and write
type n’s Lagrangean as:

max L, = F(ap, en) — Clan, en) + Iy + A X (en, — 0(an) — k), (2)

Gn,En

where )\, is the (endogenously determined) shadow price of the regulation for type n. Consumer

8Introducing heterogeneous damages across consumers would cause our baseline results to have elasticity-weighted
second-best tax rates, as in Diamond (1973).



n’s first-order conditions are:

oF, oC ;
day, B da, Ano’(an) (3)
oF, 0C

— == =\, 4
Oe, Oey, A (4)

Note that A, may be zero for some or all types if the regulation is not binding. Moreover, it will
generally vary across types. These conditions bring to light the basic economics of ABR. ABR
creates a pair of wedges between marginal utility and marginal cost for a and e; it acts just like a
pair of taxes (or subsidies) in the “markets” for a and e. These wedges are proportional to each
other, differing by a factor of —o’(a).?

The first-best allocation implies no wedge in the market for a. For the consumer, this can
only be true if A\, or ¢'(ay) is zero. If ¢’(a,) = 0 (i.e., there is no attribute basing) then every
consumers’ first-order condition for a,, will match the planner’s, but their first-order conditions for
en will generally not meet the conditions required of efficiency. The reason is that the endogenously
determined A\, will generally vary across consumer types. For some, )\, may be zero because their
preferences lead them to choose a bundle that complies with the standard, even in the absence
of policy. For others, A, will be positive, and it will differ across individuals. Again using the
terminology of pollution mitigation, this is equivalent to the case where marginal costs of abatement
differ across sources.

Under some conditions, ABR can increase a policy’s efficiency by equalizing marginal costs of
generating (mitigating) the externality. It does so, however, by creating a distortion in the choice of
a, so that the benefits of marginal cost equalization need to be balanced against the distortions to
the attribute in an optimally designed ABR. We show this result below, but before doing so, we first
emphasize that ABR creates a distortion without generating any benefits in certain circumstances,
namely when a regulation has a compliance trading system. This is relevant because real-world

attribute-based policies, like CAFE, have such a trading system.

9Similar to our observation on wedges here, Proposition 2 in Gillingham (2013) points out that footprint-based
CAFE standards create an incentive to increase footprint by examining related first-order conditions.

10



2.1 Policies with compliance trading

Many policies, including CAFE since 2012, have a compliance trading system in which a product or
firm that exceeds the standard is issued a credit for its “excess compliance”. An out-of-compliance
firm can buy this credit and use it to comply with the regulation. Such a system implies that
regulations bind only on the market as a whole, rather than on the individual products or firms. If
the market for these credits is competitive, then the shadow price of the regulation will be uniform

.10 We use \, without a subscript, to

across firms and equal to the equilibrium price of a credi
denote the market-wide shadow price of complying with the regulation when there is trading.
When there is compliance trading, the potential benefit that ABR provides by equalizing

marginal costs of compliance is obviated, which leads to Proposition 1.

Proposition 1. The first-best allocation can be achieved for a regulation with compliance trading

by setting o’'(a) = 0 and choosing k so that A = ¢.

The proof of Proposition 1 (along with all other proofs) is in the appendix. Briefly, the proof shows
that when A\ = ¢ and ¢’/(a) = 0, each consumer’s optimality conditions match the planner’s exactly.
This result is not surprising, but it cuts to the heart of an evaluation of ABR. It says that the
marginal incentive (the shadow price) to e should equal marginal benefits, just as in a Pigouvian
tax, and that the attribute-slope should be zero—i.e., there should be no attribute basing.
Proposition 1 can be recast as a tax (or subsidy, in this case) policy, rather than a regulation,
which makes the link between our results and the optimal tax literature more transparent. Instead
of a regulation, suppose that the attribute-based policy S(a, e) is a subsidy equal to s x (e — o(a))
and that all needed revenue is collected lump-sum equally from each consumer in a lump-sum tax
G. The consumer’s problem is then maxg, ¢, Fn(an,en) — P(an,en) +In —G+sx (en —o(an) — k),
which will produce exactly the same choices as the regulation with compliance trading whenever

s = A and the same target function o(a) is used.!! This leads to a corollary of Proposition 1 for a

0Formally, suppose that market credits m are available at price P, and can be used for compliance so that
consumer n’s constrained optimization problem becomes maxa,, e, ,mn Frn(an,€n) — P(an,en) + In — Pmmpn + Ap X
(en + mn — o(an) — k). A consumer for whom the private cost of increasing e exceeds the market price will buy
permits and reduce e, and one for whom the private cost of increasing e is less than P,, will increase their own e and
sell the excess credits. In equilibrium, the shadow price A, for all consumers will converge to a common value, equal
to P, which we denote as A without a subscript. The consumer’s condition can then be rewritten to eliminate the
permits (because they cancel out) and substituting a shadow price that, from the point of view of the individual, is
fixed (rather than endogenous): maxa,, e, Fn(an,en) — P(an,en) + In + XA X (€n — o(an) — k).

1VWe assume the same normalization that o(0) = 0, and we drop « from our formulation of the subsidy. This is

11



subsidy.

Corollary 1. The first-best allocation can be achieved with a subsidy by setting o'(a) = 0 and
s =¢.

This is the same result as Proposition 1—attribute-basing is not part of the first-best solution, which
features a Pigouvian subsidy—but it helps tie ABR to the literature. The “additivity property” of
optimal taxation in the presence of externalities establishes that (a) the optimal tax on a commodity
that produces an externality is equal to the optimal tax on that good if there were no externality,
plus marginal external damages; and (b) the externality does not change the optimal tax on other
goods, even if they are substitutes or complements to the externality-generating good (Kopczuk
2003). In our context, where optimal taxes are zero in the absence of the externality, this implies
that the subsidy on e is just marginal external benefits and that there should be no subsidy (or
tax) on a, regardless of the complementarity or substitutability of a and e.!?

The subsidy version of the problem also clarifies the connection between ABR and Harberger
triangles. Consider a subsidy with s = ¢ and ¢’(a) # 0, which produces an undesired subsidy to a
that creates deadweight loss. A “partial equilibrium” approximation (that is, one that ignores the
way in which a wedge in the choice of a distorts the choice of e by shifting its costs and benefits)
of this deadweight loss is the Harberger triangle, which is 1/2 - %ﬁ(a)(sa/ (a))®. As in a standard
tax setting, this approximation suggests that the deadweight loss grows with the square of the tax
wedge (so’(a)). In addition, the derivative indicates that the deadweight loss will be larger when
a is more responsive to attribute-based policy incentives. This provides an important implication
for our empirical analysis—the responsiveness of a to ABR is a key parameter that determines the

the welfare implications of ABR.

immaterial, and is done purely for exposition. For the regulation, k is a useful parameter because raising or lowering
it will change A while holding o(a) fixed. In the subsidy case, where s is set directly, the s term is superfluous as it
functions as a lump-sum transfer and we abstract from income effects.

12Kopczuk (2003) shows that the additivity property holds quite generally, even when the first-best is not obtain-
able. The only requirement for additivity to hold is that the externality-generating good be directly taxable. Thus,
our “no attribute-basing” result would hold if we introduced revenue requirements, income taxation, other goods,
equity concerns, etc., so long as direct targeting of e were possible. (In such second-best settings, the optimal tax on a
will not generally be zero, but this will not be because of the externality—i.e., changing the size of the externality will
not change the optimal tax on a.) When the externality cannot be directly targeted, this result requires modification
because, as is generally true in second-best situations, taxation of all goods will be optimal. We argue below, however,
that real-world attribute-based policies cannot be justified on these grounds and are not, in practice, motivated by
these concerns.
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2.2 Policies with compliance trading and exogenous policy parameters

Under compliance trading, there should be no attribute-basing. But, policy makers may sometimes
be constrained in their choice of policy parameters (perhaps because of political considerations).
To see how constraints on the planner might influence attribute-based policy designs, we derive
second-best parameter values (denoted with a superscript SB) under the assumption that the
planner takes either the tax rate s or the attribute slope o’(a) as given.

For simplicity, we restrict attention to cases where the attribute slope is linear, so that o(a) = da
where & = ¢’(a) is a constant. We show results here for the subsidy rather than a regulation for
ease of exposition—the subsidy rate s is a direct choice variable in the subsidy policy, whereas A
is a function of k—but there are exact analogs for all results for a regulation whenever A = s. The
linear subsidy is written as S(a,e) = s X (e — da).

Proposition 2 derives the second-best attribute slope (653 ) when the subsidy rate s is taken as

fixed.

Proposition 2. For a linear subsidy, when s is fized, the second-best attribute slope is:

55B — S — ¢(Zn gﬁ)/n
s (X, 58)/n

When the subsidy is not set at marginal benefits, the optimal attribute-slope will not be zero.?

Instead it is the product of two terms, the first of which is the percentage difference between
marginal benefits and the subsidy (i.e., how “wrong” is the subsidy), and the second of which is
a ratio of derivatives of a and e, averaged over consumer types. The second term indicates what
portion of the market’s response to a change in the attribute slope will be in e (which boosts the
externality) versus in a (which creates distortion). When this is small (response is largely in a),
9B will be small. This is intuitive; if the attribute slope mainly induces a change in a, it will be a
poor substitute for a direct tax on e. This formula motivates our empirical analysis—the market’s

responses of a and e to ABR are key parameters to determine the second-best attribute slope, and

we estimate them below.

13Note that 6°F does collapse to zero when s = ¢ because the first term will be zero.
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If attribute-basing in fuel economy policies was being used as a way to overcome standards that
are too weak on average, then Proposition 2 suggests that the second-best attribute slopes would
likely be upward sloping (6°8 > 0), whereas real-world fuel-economy ABR all have a downward
slope (698 < 0). If a policy for a positive externality is too weak, then (0 < s < ¢), which makes

the first term negative. Increasing ¢ (which means “flattening” the negative slope) makes the

aan

< 0. Increasing & affects the choice of

e indirectly by shifting a. If @ and e are gross substitutes (which is uncertain, but seems likely),

then 86" > 0.1 This makes 658 > 0, which suggests that size should be penalized, not rewarded,

if attribute-basing is meant to compensate for a fuel economy policy that is too weak.
Proposition 3 describes the opposite case. It expresses the second-best subsidy rate when the

attribute slope ¢ is taken as fixed.

Proposition 3. For a linear subsidy, when & is fixed, the second-best subsidy rate is:

$SB _ ¢ _ ¢
INROANRECT
L-o <<zn as)/n)

where €5 denotes the elasticity of y with respect to x for each pair of variables.

Proposition 3 shows that, in the presence of a non-zero attribute slope, the optimal corrective
subsidy on e is not just marginal benefits (¢), as it is in the first best.!® Instead, it is marginal
benefits divided by one minus the attribute slope times a ratio of derivatives, averaged over con-
sumer types. These derivatives capture how a and e respond to a change in the subsidy rate. The

second formulation rewrites these derivatives as elasticities.

a

This formula implies that the market’s responsiveness of a and e to ABR (€2

and €) are
key statistics to determine the second-best subsidy rate. Our empirical analysis provides actual
estimates of €2 and €S for one case, but it is worth considering whether the formula’s denominator

is likely to be larger or smaller than one in general. In most real-world ABRs, the attribute-slope is

We think the gross substitute case is the most likely one, but it ultimately depends on the relative cross-partial
derivatives of F;, and C. We expect that 8 > 0 for energy efficiency and size—i.e., the cost of raising fuel economy
for a larger vehicle is larger. For utility, 2 m is plausibly zero, or small, because the value of energy efficiency (which
saves fuel cost) is largely independent of vehicle size.

5Note that s°F does collapse to the first best if = 0 or if @ is perfectly inelastic because the second term in the
denominator will be zero.
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negative (¢J < 0). A higher s increases the subsidy to both a and e, so that both sets of derivatives
will generally be positive (¢2 > 0 and €¢ > 0). Then, the denominator of s52 will be greater than
one, so s98 < ¢. This means that attribute-basing attenuates corrective policy and the second-
best subsidy rate is smaller than the Pigouvian benchmark; the subsidy is below marginal benefits.
The reason is that the subsidy induces distortions in a. The cost of increasing e by one unit is
therefore not only the difference between willingness to pay and the production cost of e, but also
the marginal distortion induced in the choice of a. As the market’s response is tilted towards an
increase in a (rather than e), the distortionary cost will be greater, the ratio of derivatives will be
larger, and the optimal subsidy will be lower. In the extreme, if firms respond to a change in the

subsidy exclusively by manipulating a, the subsidy will be zero.

2.3 Policies without compliance trading

We next derive results for the case where there is no compliance trading. In the absence of com-
pliance trading, a flat standard will impose different burdens on different products and will lead
to an inefficient dispersion in the marginal costs of compliance. Attribute-basing can improve the
efficiency of such a policy by (partially) equalizing marginal costs of compliance across firms or
products, so long as the attribute is correlated with marginal compliance costs. But, attribute-
basing is not an efficient substitute for compliance trading because, unless the attribute perfectly
predicts compliance costs, ABR will not fully equalize compliance costs, and also because it equal-
izes compliance costs by creating a distortionary incentive to change the attribute. The latter
consideration causes the optimal degree of attribute-basing to stop short of harmonizing marginal
costs of compliance as fully as possible, instead trading off some degree of harmonization against
distortions induced in the attribute.

In the appendix, we show how to generalize the second-best formulas in Propositions 2 and 3 for
the linear attribute-based policy (i.e., 0’(a) = &) when there is no compliance trading. Rather than
focusing on these results, which express the optimal policies as functions of the covariance between
marginal costs of compliance and the derivatives of a and e with respect to x and &, we provide a
different result in Proposition 4 that expresses the optimal attribute slope for the linear policy as a
function of the correlation between marginal compliance costs and the level of the attribute a. We

denote the optimal attribute slope in the no compliance case with superscript NC, and we denote
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variable means with a bar.

Proposition 4. When there is no compliance trading, and the constraint binds for all n, the optimal

NC

attribute slope & in the linear requlation is:

> (A=A (an—a)
~NC n

- dan dan ’
L=n_ Q& __ g LZn Ok
o P an—"1

which is not zero unless ay is perfectly uncorrelated with A, under a flat standard.

In contrast to the result under compliance trading (Proposition 1), this proposition shows that
some attribute-basing is optimal (6V¢ # 0). The exception is when the attribute is perfectly
uncorrelated with marginal compliance costs (under a flat standard), in which case the numerator
is zero, and attribute-basing, which cannot equalize compliance costs, is undesirable.

Consider the implications of Proposition 4 for the case of fuel economy regulation, where e
is fuel economy and a is vehicle weight, as in Japan. The denominator of 6V¢ represents how
much a responds to changes in the regulation. Raising & (flattening the negative attribute slope)

oan
Jan < (),

lowers the implicit subsidy to weight, so we expect (and find empirically below) that
Raising k (tightening the standard overall) raises the implicit subsidy to weight (by raising the
shadow price), so we expect (and find empirically below) that 88%‘ > 0. Thus, the denominator
will be negative. The numerator of V¢ is the sample covariance between the marginal cost of
improving fuel economy (which equals the shadow price) and vehicle weight. This covariance will
be positive as long as the marginal costs of improving fuel economy are rising.'® This implies that
6NC < 0—heavier vehicles must meet a lower standard—as is the case in real world policies.
Under a flat standard, heavier vehicles will have a higher marginal cost of compliance because
they will be forced to improve fuel economy more than lighter vehicles. As the attribute-slope
becomes more negative, the correlation between weight and the shadow price will get smaller. If
the slope were sufficiently steep, this correlation could be driven to zero. This cannot be a solution
to &, however, because if the denominator became zero, it would imply no attribute-basing. Rather,

the planner stops short of fully equalizing marginal compliance costs, so heavier vehicles will still

6Note that the formula for 6V is not in closed form. The shadow price A, is endogenous, so its correlation
with a, is also endogenous (as are the derivatives of a, with respect to the parameters). In this example, that the
correlation will be negative can be shown by contradiction.
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have higher compliance burdens under the attribute-based policy, and this will be more true as the
attribute is more elastic (i.e., the denominator is larger).

In general, the proposition shows that the planner must balance two competing factors when
determining the optimal degree of attribute-basing.!” The first factor is the extent to which ABR
can equalize marginal compliance costs. The formula’s numerator indicates that the planner will
make the slope steeper when there is a strong correlation between the attribute and marginal
compliance costs. The second factor is the extent to which ABR induces distortions in the attribute.
The formula’s denominator indicates that the slope should be flatter when market responses in a
to the ABR are strong. An optimizing planner will thus use ABR to equalize compliance costs,
but not fully; they stop short when the increases in the distortion equal the benefits of increase
harmonization. Below, we estimate the market response of a and e to an ABR and relate our

findings back to these theoretical results.

2.4 Discussion of modeling assumptions

Our theory considers policies where o(a) is smooth (differentiable everywhere), but below we em-
pirically analyze a notched policy, in which o(a) is a step function. The welfare implications of
attribute-basing are quite similar for notched policies, which we discuss further below were relevant
as well as in an appendix. We presented the smooth case believing it to be more general and
intuitive.

Our model abstracts from several factors that might make attribute-based regulation desirable,
even when compliance trading is available. First, consider incidence. ABR can smooth the average
(as opposed to marginal) compliance burden across segments of the market, or it might be useful
in tilting the burden in favor of preferred producers and consumers. For example, some argue that
CAFE introduced footprint-based standards in order to favor the Detroit automakers (who have
an advantage in large vehicles) and their consumers relative to their Asian rivals. In Europe, the
regulation is said to have been designed to favor German automakers (whose vehicles are relatively

large) vis-a-vis French and Italian producers. If distribution is the motivation for ABR, then the

'7An interesting benchmark is the special case when the attribute a is exogenous (so that there is no distortion
caused by attribute-basing and one of the competing forces is removed), and the cost of compliance for each product
is equal to (e, — 6%)2, where e;, is the optimal e,, in the absence of policy. In that case, the optimal & is the same
as the Ordinary Least Squares solution to fitting a line between e,, and a,. This is, in fact, how attribute slopes in
both the United States and Japan are determined, which would be optimal only if there were no distortion in a.
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distortions it induces represent the costs of achieving distributional goals.

Second, our model assumes that the externality is directly related to e, which can be targeted
directly. In reality, because they do not directly target externalities, it is well known that energy-
efficiency policies are imperfect instruments (as are most, if not all, policies targeting externalities).
Fuel-economy policies, for example, induce a rebound effect (additional travel induced by a lower
cost per mile of travel), fail to create proper incentives in the used car market, and are ineffi-
cient when lifetime mileage varies across consumers.'® Attribute-based energy efficiency policies
will inherit these inefficiencies.'® Truly first-best solutions will thus not be obtainable, even with
compliance trading. Our focus, however, is not on determining whether or not attribute-based
energy-efficiency policies are perfectly efficient, but rather on whether or not they can improve
welfare as compared to energy-efficiency policies that do not employ attribute-basing.

The additional flexibility afforded by attribute-basing could ameliorate some of the problems
created by energy-efficiency policies, but we are doubtful that this is the case for attribute-based
policies as they are currently practiced. Consider the case of greenhouse gas emissions from au-
tomobile emissions, which are proportional to gallons consumed. A direct tax on gasoline would
be efficient. A tax (or an implicit tax achieve through regulation) on fuel economy is inefficient
if vehicles are driven different lifetimes miles, and thus create different total emissions. Heavier
vehicles tend to have longer lives and thus consume more gasoline than smaller vehicles, even ac-
counting for differences in their rates of fuel consumption (Lu 2006). Attribute-basing could offer
efficiency improvements if it placed a higher tax per unit of fuel consumption on heavier vehicles;
that is, attribute-basing would be useful in creating a tax on energy efficiency that varied with the
attribute, which is not how existing policies are designed.

Fuel-economy policies are also inefficient because they induce a rebound effect. If the rebound
effect is correlated with vehicle size (or another attribute), then attribute-based regulation could
improve the efficiency of a policy by shifting compliance towards vehicles that have less elastic

mileage. There is evidence on heterogeneity in the rebound effect derived from micro data on how

!8See Anderson, Parry, Sallee, and Fischer (2011) for a recent review of CAFE that describes inefficiencies of
fuel-economy policy. See Borenstein (Forthcoming) for a recent discussion of the rebound effect induced by energy-
efficiency policies. See Jacobsen and van Benthem (2013) for an exploration of effects on used durables markets.

19 A substantial literature considers whether or not such policies can be efficiency enhancing when consumers
improperly value energy efficiency. Fischer, Harrington, and Parry (2007), Allcott, Mullainathan, and Taubinsky
(2014) and Heutel (2011) provide theoretical treatments, and Busse, Knittel, and Zettelmeyer (2013) and Allcott and
Wozny (2012) provide key empirical tests.
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vehicle miles traveled responds to fuel prices in Gillingham (2011) and Knittel and Sandler (2012),
but this data was not used in the design of policies. Instead, the attribute-slope was drawn to fit
the observed correlations between fuel economy and footprint or weight.

Without direct targeting, the additivity property of corrective policies will not hold (Kopczuk
2003), and the flexibility afforded by attribute-basing will have some efficiency value for the reason
that, in general, all instruments are useful in second-best settings.?’ Moreover, attribute-based
energy efficiency policies might be useful in fixing some of the problems associated with energy-
efficiency policies, but we know of no evidence that such considerations have actually been part of
the policy-design process.

Third, we assume perfection competition, which abstracts from several issues. A market with
imperfect competition among differentiated products will not necessarily offer the set of goods
(attribute bundles) that maximizes social welfare, nor will prices necessarily maximize social welfare
conditional on the set of products on offer. Thus, a cleverly-designed ABR. might be able to improve
social welfare by changing the mix of products or shifting equilibrium prices. It is not, however,
obvious under what conditions this would be true, nor do we know of any evidence that actual
policies have been designed with such market inefficiencies in mind. Thus, we consider this an
issue of great theoretical interest, but we are less sanguine about its practical import for explaining
real-world policies.?!

One way in which ABR might be helpful in practice is in fixing distortions to the “extensive
margin” of a market. As Holland, Hughes, and Knittel (2009) demonstrate for the case of low-

carbon fuel standards in California, an average emissions standard creates a relative subsidy for

29There is a vast literature on second-best tax policies. Particularly relevant to the study of automobile emissions
are Fullerton and West (2002) and Fullerton and West (2010), which derive second-best taxes on several vehicle
attributes in an attempt to mimic an efficient (direct) tax on emissions. They show that counterintuitive results,
such as a subsidy on vehicle size, can arise because of the interaction of multiple tax instruments on correlated
attributes and multiple margins of adjustment, including not just the choice of vehicle but also the choice of miles
traveled.

21To see the practical challenges involved, consider the intuition of the Spence (1975) model of quality pricing
applied to automobiles, where vehicle size takes the place of quality. If the marginal consumer of a product valued
size less than price, then an ABR that implicitly subsidized size might make prices more efficient. But, with many
products, each good will have a different marginal consumer (or distribution of marginal consumers), so efficient
wedges will differ across products. Or, note that markups are likely to be correlated with regulated attributes in
many markets. Heavier vehicles, for example, are thought to have greater per unit profits than lighter vehicles (though
this may itself be the outcome of fuel economy regulations). This might suggest that too few heavy vehicles are being
sold, so an implicit subsidy to size through an ABR would be desirable. But, this result ultimately hinges on the
form of competition, the reasons that markups differ initially (which may be hard to determine), and the endogenous
response of not just prices, but attribute bundles to the policy.
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products above the standard and a relative tax for products below the standard. Depending on
parameters, this could raise or lower the average price level and cause the overall product market
to expand or contract. Provided that cars create negative externalities relative to the outside good,
the optimal policy should shrink the car market. If a flat standard happened to create an expansion
of the market, it is possible that an attribute-based standard could reverse this incentive and shrink
the car market by providing a tax on all products.??

Fourth and finally, advocates of attribute-basing in car markets have argued that it promotes
technology adoption.?3 Roughly speaking, automakers can comply with a flat standard by down-
sizing their fleet or by adopting new technologies. Attribute-based policies can be designed to
limit opportunities for downsizing, which forces compliance to come from technology. If there are
spillovers between companies from adopting new technologies, there might be some justification
for attribute-basing. In this case, the distortions in the attribute represent a cost of spurring

technology. Direct subsidies to new technology adoption may thus be more efficient.

3 Identifying Attribute Distortions through Bunching Analysis

Our theory predicts that attribute-basing will lead to distortions in the choice of the secondary
attribute. In this section, we test that prediction by analyzing the distribution of the secondary
attribute for the case of Japanese fuel-economy standards. The Japanese regulation has several
advantages from the point of view of identification. First, the regulation features “notches”; the
fuel-economy target function in Japan is a downward-sloping step function in vehicle weight. These
notches provide substantial variation in regulatory incentives and allow us to use empirical methods
developed for the study of nonlinear taxation (Saez 1999, 2010; Chetty, Friedman, Olsen, and
Pistaferri 2011; Kleven and Waseem 2013).2* Second, the Japanese government has been using

attribute-based regulation for decades, and we have more than ten years of data available for

22Note that Jacobsen and van Benthem (2013) suggest that the benefits resulting from higher new car prices will
be partly offset by changes in vehicle scrappage.

23 Advocates have also argued that attribute-basing promotes safety by promoting larger cars. This appears to be
based on a misunderstanding of safety-related externalities. Larger cars are safer for the car’s occupants (which is a
private benefit and should be priced into the car), but they are more dangerous to those outside the car (which is an
externality). If ABR changes the distribution of sizes of cars, this could affect net safety. See Jacobsen (2013b) for a
related model that concludes that footprint-based CAFE is roughly safety neutral.

240ur theory concerns smooth attribute-based policies, but the welfare implications of notched ABR are the same,
which we illustrate in the appendix.
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Figure 2: Fuel-Economy Standards in Japan
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Note: The dashed line shows the fuel economy standard in Japan until 2010. The solid line

shows the new fuel economy standards whose target year is 2015.

analysis.?’> Third, our data span a policy change that enables us to use panel variation, which we

pursue in section 4.

3.1 Data and Policy Background

Japanese fuel-economy standards, which were first introduced in 1979 and have changed four times
since, are weight-based. Our data, which begin in 2001, span the two most recent policy regimes.
The target functions for these policies are shown in Figure 2. To be in compliance with the
regulation, firms must have a sales-weighted average fuel economy that exceeds the sales-weighted
average target of their vehicles, given their weights, and there is no trading of compliance credits
across firms although it is one of the key issues in the ongoing policy debate.?6 In Japan, firms are

required to meet this standard only in the “target year” of a policy. This is different from the U.S.

25In contrast, the United States just recently instituted attribute-based fuel economy regulation in 2012, which
generates little data for analysis. In addition, its attribute-based target function is smooth, making identification
more challenging.

26Technically, this obligation extends to each weight segment separately. However, firms were allowed to apply
excess credits from one weight category to offset a deficit in another. Thus, in the end, the policy is functionally
equivalent to the U.S. CAFE program, where there is one firm-wide requirement (but no trading across firms).
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CAFE program, which requires compliance annually.27

When introducing a new standard, the Japanese government selects a set of weight categories
(the widths of the steps in Figure 2).2® The height of the standard is then determined by what is
called the “front-runner” system. For each weight category, the new standard is set as a percent-
age improvement over the highest fuel economy vehicle (excluding vehicles with alternative power
trains) currently sold in that segment. When the newest standard was introduced in 2009, the
government also introduced a separate tax incentive that applies to each specific car model, rather
than for a corporate fleet average. We make use of this policy in our panel analysis in section 4.
For our bunching analysis, we simply note that both incentives are present in the latter period, and
either could be motivating strategic bunching of vehicle weight at the regulatory thresholds (which
are common across the two policies).

Our data, which cover all new vehicles sold in Japan from 2001 through 2013, come from the
Japanese Ministry of Land, Infrastructure, Transportation, and Tourism (MLIT). The data include
each vehicle’s model year, model name, manufacturer, engine type, displacement, transmission
type, weight, fuel economy, fuel economy target, estimated carbon dioxide emissions, number of
passengers, wheel drive type, and devices used for improving fuel economy. Table 1 presents
summary statistics. There are between 1,100 and 1,700 different vehicle configurations sold in the
Japanese automobile market each year. This includes both domestic and imported cars. The data

are not sales-weighted; we use the vehicle model as our unit of analysis throughout the paper.?”

2"This does not mean, however, that firms have no incentive to comply before the target year. Consumers see a
car’s fuel economy relative to the standard when buying a car, so compliance may affect sales. Compliance may also
be a part of long-run interactions between firms and the government. Our data show clearly that firms react to the
standards even before the target year. Also, to be precise, under CAFE firms may do some limited banking and
borrowing, so they must meet the standard every year, on average.

28Tt is not transparent how these weight categories are chosen, but note that they are almost all of regular width,
either 250 kilograms in the old standard or 120 kilograms in the new.

29Gales-weighting might be a useful extension for some of our results, but Japanese automobile sales data suffer
from a problem common to automotive sales data sets in general, which is that sales data are generally recorded at
a notably higher unit of analysis and a different calendar. For example, there will be several different versions of the
Toyota Camry recorded in our regulatory data, but industry sources typically record sales only for all versions of the
Camry together. In addition, the relevant sales are model year totals, not calendar totals, whereas industry data
typically cover calendar time and do not distinguish between, for example, a 2013 Camry and a 2014 Camry that are
sold in the same month. In contrast, the dataset used in our analysis provides disaggregated data for each vehicle
configuration. For example, our dataset provides information about each version of the 2013 Camry as well as each
version of the 2014 Camry.
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Table 1: Summary Statistics

Year N Fuel Economy Vehicle weight Displacement CO2
(km/liter) (kg) (liter) (g-CO2/km)
2001 1441 1353 (4.58) 1241.15 (356.63)  1.84 (0.98) 19540 (66.72)
2002 1375 13.35 (4.33)  1263.52 (347.00) 1.86 (0.97) 196.72 (66.26)
2003 1178 13.78 (4.53)  1257.15 (356.28) 1.85 (1.03) 191.88 (68.08)
2004 1558 14.20 (4.78)  1255.37 (364.69) 1.82 (1.03) 184.33 (66.67)
2005 1224 13.30 (4.66) 1324.81 (380.62)  2.00 (1.13)  198.14 (71.62)
2006 1286 13.08 (4.59) 1356.56 (391.13) 2.08 (1.17) 201.78 (72.67)
2007 1298 13.24 (4.78)  1369.41 (399.45) 2.09 (1.22) 200.35 (75.07)
2008 1169 13.38 (4.82)  1390.09 (405.77) 2.14 (1.29) 198.58 (76.27)
2009 1264 13.49 (4.93) 1396.40 (413.76) 2.15 (1.30) 197.73 (76.67)
2010 1300 13.50 (5.04)  1428.27 (438.06) 2.21 (1.30) 198.32 (77.34)
2011 1391 13.95 (5.06) 1437.21 (426.23) 2.19 (1.28) 190.15 (71.60)
2012 1541 14.50 (5.21) 1446.50 (411.87) 2.16 (1.24) 182.05 (67.26)
2013 1706 1443 (5.40) 1476.79 (400.31)  2.24 (1.24)  183.67 (67.37)

Note: This table shows the number of observations, means and standard deviations of variables by year. Data are

not sales-weighted.

3.2 Excess Bunching at Weight Notches

The notched attribute-based standards in Japan create incentives for automakers to increase vehicle
weight, but only up to specific values. Increasing weight offers no regulatory benefit, unless the
increase passes a vehicle over a threshold. Excess mass (“bunching”) in the weight distribution at
exactly (or slightly beyond) these thresholds is thus evidence of weight manipulation. Moreover,
if automakers are able to choose vehicle weight with precision, then all manipulated vehicles will
have a weight exactly at a threshold. In turn, this implies that all vehicles with weights not at a
regulatory threshold have not had their weight manipulated in response to the policy.

We begin by presenting histograms of vehicle weight in Figure 3. Panel A shows the histogram
of cars sold between 2001 and 2008. In this period, all vehicles were subject to the old fuel
economy standards, which is overlaid in the same figure. The figure reveals strong evidence of
weight manipulation in response to the policy; there is visible excess mass at the notch points.
The magnitude of this bunching is substantial. There are more than double the number of cars
at each notch point, as compared to the surrounding weight segments. The histogram bins have a

width of only 10 kilograms (which is the finest measure available in our data), and yet the bunching
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Figure 3: Fuel-Economy Standard and Histogram of Vehicles
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Note: Panel A shows the histogram of vehicles from 2001 to 2008, where all vehicles had the
old fuel economy standard. Panel B shows the histogram of vehicles from 2009 to 2013, in

which the new fuel-economy standard was introduced.
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appears to be isolated to the weight categories immediately at each threshold. This suggests that
automakers can manipulate weight very finely.

Panel B shows the corresponding figure for data taken from years when the new standard was in
effect. Between Panel A and B, the mass points shifted precisely in accordance with the change in
the locations of the notch points. This shift in the location of the distributional anomalies provides
further compelling evidence that firms respond to the attributed-based regulation.

In the appendix, we present analogous results for “kei-cars”. Kei-cars are very small cars with
engine displacements below 0.66 liters.?? The weight distribution of kei-cars also exhibits bunching
at notch points, and the bunching moves over time in accordance with the policy change.

In sum, the raw data provide strong evidence that market actors responded to attribute-based
fuel-economy policies in Japan by manipulating vehicle weight, as predicted by theory. In the next

section, we use econometric methods to estimate the magnitude of this excess bunching.

3.3 Estimation of Excess Bunching at Notches

Econometric estimation of excess bunching in kinked or notched schedules is relatively new in the

economics literature.?!

Saez (1999) and Saez (2010) estimate the income elasticity of taxpayers
in the United States with respect to income tax rates and EITC schedules by examining excess
bunching around kinks in the U.S. personal income tax schedule. Similarly, Chetty, Friedman,
Olsen, and Pistaferri (2011) estimate the income elasticity of taxpayers in Denmark with respect to
income tax rates by examining the excess bunching in the kinked tax schedules there. In Pakistan,
the income tax schedule has notches instead of kinks. That is, the average income tax rate is
piecewise linear. Kleven and Waseem (2013) use a method similar to Chetty, Friedman, Olsen,
and Pistaferri (2011) to estimate the elasticity of income with respect to income tax rates using
bunching around these notches. Our approach is closely related to these papers, although our

application is a fuel economy regulation, not an income tax.

To estimate the magnitude of the excess bunching, our first step is to estimate the counterfactual

39For comparison, no car sold in the United States in 2010 would qualify as a kei-car. The two-seat Smart Car
has the smallest displacement of any car in the United States that year, at 1.0 liters. Although kei-cars must comply
with the same fuel economy regulations as all other cars, we present our results for them separately because they
occupy a unique market segment, have different tax and insurance regulations, and are generally viewed as a distinct
product category by Japanese consumers.

31See Slemrod (2010) for a review of this literature.
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distribution as if there were no bunching at the notch points, which parallels the procedure in
Chetty, Friedman, Olsen, and Pistaferri (2011). We start by grouping cars into small weight bins
(10 kg bins in the application below). For bin j, we denote the number of cars in that bin by c;
and the car weight by w;. For notches & =1, ..., K, we create dummy variables dj, that equal one
if j is at notch k. (Note that there are several bins on each “step” between notches, which we can

denote as j € (k — 1,k).) We then fit a polynomial of order S to the bin counts in the empirical

distribution, excluding the data at the notches, by estimating a regression:3?
S K
;=Y 8L () + > A0 di+ej, (5)
s=0 k=1

where 8Y is an initial estimate for the polynomial fit, and 72 is an initial estimate for a bin fixed
effect for notch k. (We refer to these as initial estimates because we will adjust them in a subsequent
step.) By including a dummy for each notch, the polynomial is estimated without considering the
data at the notches, defined as the 10 kg category starting at the notch. We define an initial
estimate of the counterfactual distribution as the predicted values from this regression omitting the
contribution of the notch dummies: é? = ijo BS - (w;)®. The excess number of cars that locate at
the notch relative to this counterfactual dégsity is 32 =cp — ég = czg

This simple calculation overestimates Bj because it does not account for the fact that the
additional cars at the notch come from elsewhere in the distribution. That is, this measure does
not satisfy the constraint that the area under the counterfactual distribution must equal the area
under the empirical distribution. To account for this problem, we must shift the counterfactual
distribution upward until it satisfies this integration constraint.

The appropriate way to shift the counterfactual distribution depends on where the excess bunch-
ing comes from. Our theory indicates that attribute-based fuel economy regulation provides in-
centives to increase car weight—that is, excess bunching should come from the “left”. We assume

that this is the case.3® We also make the conservative assumption that the bunching observed

32We use S = 7 for our empirical estimation below. Our estimates are not sensitive to the choice of S for the range
in S € [3,11].

33The regulation creates an incentive to increase car weight in order to bunch at a weight notch because it provides
a lower fuel economy target. The regulation may also create an incentive to decrease weight if, for example, decreasing
weight mechanically helps improving fuel economy. However, such an incentive is “smooth” over any weight levels in
the sense that vehicles at anywhere in the weight distribution have this incentive, and therefore, the incentive does
not create bunching at the notches.
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at a given notch comes only from the adjacent step in the regulatory schedule, which limits the
maximum increase in weight. That is, the bunching at notch k comes from bins j € (k — 1, k).34
In practice, automakers may increase the weight of a car so that it moves more than one weight
category. In that case, our procedure will underestimate weight distortions. In this sense, our
procedure provides a lower bound on weight manipulation.

In addition, estimation requires that we make some parametric assumption about the distri-
bution of bunching. We make two such assumptions, the first of which follows Chetty, Friedman,
Olsen, and Pistaferri (2011), who shift the affected part of the counterfactual distribution uniformly
to satisfy the integration constraint. In this approach, we assume that the bunching comes uni-
formly from the range of j € (k—1,k). We define the counterfactual distribution ¢; = SZ: 3, (wj)®

as the fitted values from the regression:

K S K
Cj-i—zakj'Bk2258'(wj)8+2’}/k'dk+8j, (6)
k=1 s=0 k=1
where By, = ¢, — ¢ = dk is the excess number of cars at the notch implied by this counterfactual.
K .
The left hand side of this equation implies that we shift ¢; by ) ay; - B, to satisfy the integration
k=1

constraint. The uniform assumption implies that we assign ay; = % for j € (k—1,k) and

j€(k—1,k)
=0 for j ¢ (k—1,k). Because By, is a function of 8, the dependent variable in this regression

depends on the estimates of Bs. We therefore estimate this regression by iteration, recomputing
Bk using the estimated BS until we reach a fixed point. The bootstrapped standard errors that we
describe below adjust for this iterative estimation procedure.

The uniform assumption may underestimate or overestimate Aw if the bunching comes dispro-
portionately from the “left” or the “right” portion of j € (k — 1,k). For example, if most of the
excess mass comes from the bins near k, rather than the bins near & — 1, the uniform assump-
tion will overestimate Aw. In practice, this appears to be a minor concern, because the empirical
distribution in Figure 3 shows that there are no obvious holes in the distribution, which suggests

that the uniform assumption is reasonable. There should be clear holes if the origins of the excess

31For notch k = 1 (the first notch point), we use the lowest weight in the data as the minimum weight for this range.
Note that this approach may underestimate the change in weight, because the minimum weight in the counterfactual
distribution can be lower than the minimum weight in the observed distribution if the attribute-based regulation
shifted the minimum weight upward. We want to use this approach to keep our estimate of the change in weight
biased towards zero.
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bunching are substantially disproportional to the distribution. However, we prefer an approach
that does not impose the uniform assumption. We propose instead an approach that defines «;
based on the empirical distribution of cars relative to the counterfactual distribution. We define
the ratio between the counterfactual and observed distributions by 0; = ¢;/¢; for j € (k—1,k) and
=0 for j ¢ (k—1,k). Then, we define ay; = 2?71%. In this approach, ay; is obtained from the
relative ratio between the counterfactual and Jgf)ks:e;?ed distributions. We use this approach for our
main estimate and also report estimates from the uniform assumption approach as well.

In addition to By (the excess number of cars at notch k), we provide two more estimates
that are relevant to our welfare calculations. The first is the excess bunching as a proportion,
which is defined as b = ¢, /¢k. This is the number of vehicles at a weight notch divided by the
counterfactual estimate for that weight. The second estimate is the average changes in weight
for cars at notch k, which is the quantity-weighted average of the estimated change in weight:

> (wk—wj)(éj—cy)

E[Awk] — j€(k—1,k)

je(k—1,k)
We calculate standard errors using a parametric bootstrap procedure, which follows Chetty,

Friedman, Olsen, and Pistaferri (2011) and Kleven and Waseem (2013). We draw from the esti-
mated vector of errors €; in equation (6) with replacement to generate a new set of vehicle counts
and follow the steps outlined above to calculate our estimates. We repeat this procedure and define
our standard errors as the standard deviation of the distribution of these estimates. Because we
observe the exact population distribution of cars in the Japanese automobile market, this standard
error reflects error due to misspecification of the polynomial for the counterfactual distribution
rather than sampling error.

Figure 4 depicts our procedure graphically for two notch points. In Panel A, we plot the actual
distribution and estimated counterfactual distribution at the 1520 kg notch point. Graphically,
our estimate of excess bunching is the difference in height between the actual and counterfactual
distribution at the notch point. The estimate and standard error of the excess number of cars B
is 285.27 (3.75). That is, there are 285 excess cars at this notch compared to the counterfactual
distribution. Bunching as a proportion b is 3.75 (0.21), which means that the observed distribution
has 3.75 times more observations than the counterfactual distribution at this notch. Finally, the
average weight increase E[Aw] is 114.97 (0.22) kg for affected cars. Similarly, we illustrate our

estimation result at the 2020 kg notch point. At this notch, B = 127.07 (9.04), b = 8.51 (1.55),
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Table 2: Excess Bunching and Weight Increases at Each Notch: Old Fuel-Economy Standard

Fuel Economy Main Estimates Uniform Assumption

Notch Standard Excess Excess E[Aweight] Excess Excess E[Aweight]

Point below & above Bunching  Bunching (kg) Bunching  Bunching (kg)
the Notch (km/liter) (# of cars) (ratio) (# of cars) (ratio)
(1) 2) (3) (4) () (6) (1) (8)
830 kg 18.8 16.46 2.13 51.57 16.73 217 55.00
17.9 (7.91) (0.49) (3.21) (7.28) (0.44) N.A.
1020 kg 17.9 87.18 241 103.77 87.02 2.40 95.00
16 (8.05) (0.16) (0.49) (7.48) (0.13) N.A.
1270 kg 16 163.48 2.47 146.89 163.33 2.46 125.00
13 (7.92) (0.11) (0.62) (7.33) (0.08) N.A.
1520 kg 13 285.27 3.75 114.97 285.41 3.76 125.00
10.5 (8.21) (0.21) (0.22) (7.52) (0.15) N.A.
1770 kg 10.5 143.93 3.52 129.44 144.25 3.54 125.00
8.9 (8.93) (0.30) (0.57) (8.13) (0.24) N.A.
2020 kg 8.9 127.07 8.51 120.77 127.24 8.59 125.00
7.8 (9.04) (1.55) (0.15) (8.28) (1.43) N.A.
2270 kg 7.8 15.67 2.52 137.86 15.52 2.48 125.00
6.4 (6.40) (0.66) (4.48) (5.95) (0.64) N.A.
Kei-Cars

710 kg 21.2 60.53 2.33 72.57 59.44 2.28 75.00
18.8 (15.54) (0.30) (0.57) (13.37) (0.25) N.A.
830 kg 18.8 118.36 2.06 39.79 120.15 2.09 60.00
17.9 (15.99) (0.14) (0.09) (12.77) (0.11) N.A.
1020 kg 17.9 21.15 2.33 92.63 19.30 2.09 95.00
16 (9.48) (2.30) (1.08) (7.51) (2.08) N.A.

Note: This table shows the regression result in equation 6. Bootstrapped standard errors are in the parentheses.

and E[Aw] =120.77 (0.15).

Table 2 presents our estimates for all notches for the data between 2001 and 2008 (the old
fuel economy standard). To see the automakers’ incentives at each notch, column 2 shows the
stringency of the fuel economy standard (km/liter) below and above the notch (higher km/liter

numbers imply more stringent standards). Columns 3 to 5 report our main estimates based on the
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Figure 4: Graphical Illustration of Estimation of Excess Bunching at Each Notch Point

Panel A. Notch at 1520 kg
B = 285.27 (3.75), b = 3.75 (0.21), E[Aw] =114.97 (0.22)
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Panel B. Notch at 2020 kg
B = 127.07 (9.04), b = 8.51 (1.55), E[Aw] =120.77 (0.15)
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Note: This figure graphically shows the estimation in equation (6). The figure also lists the
estimates of B (excess bunching), b (proportional excess bunching), and E[Aw] (the average

weight increase). See the main text for details on these estimates.
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Table 3: Excess Bunching and Weight Increases at Each Notch: New Fuel-Economy Standard

Fuel Economy Main Estimates Uniform Assumption
Notch Standard Excess Excess E[Aweight] Excess Excess E[Aweight]
Point below & above Bunching  Bunching (kg) Bunching  Bunching (kg)
the Notch (km/liter) (# of cars) (ratio) (# of cars) (ratio)
(1) (2) 3) 4) () (6) (1) (8)
980 kg 20.8 5.37 1.60 50.13 5.35 1.60 40.00
20.5 (5.98) (0.50) (1.25) (5.17) (0.44) N.A.
1090 kg 20.5 14.34 2.05 51.58 14.33 2.05 55.00
18.7 (5.47) (0.34) (1.31) (4.73) (0.31) N.A.
1200 kg 18.7 26.56 2.44 61.40 26.58 2.44 55.00
17.2 (4.85) (0.24) (0.26) (4.19) (0.24) N.A.
1320 kg 17.2 20.20 1.89 64.38 20.24 1.89 60.00
15.8 (4.37) (0.16) (0.45) (3.78) (0.16) N.A.
1430 kg 15.8 28.54 2.12 52.18 28.57 2.12 55.00
14.4 (4.26) (0.15) (0.28) (3.68) (0.16) N.A.
1540 kg 14.4 44.44 2.67 61.76 44.45 2.67 55.00
13.2 (4.45) (0.18) (0.10) (3.84) (0.21) N.A.
1660 kg 13.2 81.08 4.13 65.17 81.07 4.13 60.00
12.2 (4.93) (0.33) (0.28) (4.24) (0.39) N.A.
1770 kg 12.2 43.24 2.82 53.86 43.19 2.81 55.00
11.1 (5.44) (0.25) (0.58) (4.68) (0.26) N.A.
1880 kg 11.1 36.60 2.79 52.56 36.52 2.78 55.00
10.2 (5.86) (0.29) (0.49) (5.04) (0.30) N.A.
2000 kg 10.2 33.16 3.09 68.93 33.08 3.08 60.00
9.4 (5.99) (0.38) (0.26) (5.16) (0.39) N.A.
2110 kg 9.4 20.62 2.81 58.08 20.56 2.80 55.00
8.7 (5.66) (0.44) (0.60) (4.89) (0.42) N.A.
2280 kg 8.7 6.66 2.25 91.89 6.65 2.24 88.00
74 (4.09) (1.13) (2.21) (3.57) (0.87) N.A.
Kei-Cars
860 kg 21 18.72 1.66 46.93 18.66 1.66 55.00
20.8 (4.52) (0.14) (0.77) (4.04) (0.13) N.A.
980 kg 20.8 44.82 3.47 55.80 45.04 3.51 60.00
20.5 (2.31) (0.40) (0.97) (1.80) (0.54) N.A.

Note: This table shows the regression result in equation 6. Bootstrapped standard errors are in the parentheses.

approach described above.

First, we find statistically significant excess bunching at all notches except for the 1020 kg notch
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for kei-cars, where the estimate is noisy because there are few kei-cars in this weight range. Second,
we find substantial heterogeneity in the estimates across the notches. The proportional excess
bunching b ranges from 2.1 to 8.5. The estimated weight increases E[Aw] range between 40 kg to
93 kg for kei-cars and 52 kg to 147 kg for other cars. For most cars, this amounts to around a 10%
increase in weight, which is substantial. Third, our two different approaches for approximating
the counterfactual distribution (uniform or not) produce broadly similar results. Our estimates
for B and b are not sensitive to the uniform assumption because the excess bunching is very large
compared to the counterfactual distribution, so that the way that we reach the integration constraint
matters little. We find slightly larger differences in E[Aw| between our two methods. With the
uniform assumption, F[Aw] equals half the width of the regulatory weight step immediately below
the notch by assumption, and therefore we have no standard errors for them. Our main estimates
do not impose this assumption, but nevertheless yield similar results.

Note that the counterfactual distribution we estimate represents the distribution of vehicle
weights that would exist if there was a flat (not attribute-based) fuel-economy standard with the

same shadow price.??

To see this, consider a policy with compliance trading and two weight
categories, and thus one notch, at weight a. The shadow price term in the consumer’s optimization
problem is equal to A - (e, — k1) for a < @ and X - (e, — ko) for a > a, where k1 > kg. Thus, for
any a, the shadow price term is equal to A times e,, minus some constant. The marginal regulatory
incentive affecting the choice of e is thus the shadow price A, regardless of the weight category. The
marginal incentive affecting the choice of a is zero because a small change in a does not affect the
shadow price term, unless a = a, in which case there is a discrete jump in the regulatory incentive.
Thus, the distortions in a under the notched policy comes only from the vehicles that bunch at a
weight threshold, and the marginal incentives for e (=)) and a (=0 away from the notches) match

those in a flat standard with the same shadow price \.36

Table 3 presents corresponding estimates for all notches for the data between 2009 and 2013

35This is not the same counterfactual as one with no policy at all. Firms may respond to a flat policy by downsizing
vehicles (lowering weight) as part of a strategy to boost fuel economy.

36The Japanese policy does not have full compliance trading across firms, so the precise statement is that the
counterfactual represents the distribution of weight under a flat subsidy in which each firm faces the same shadow
price as in the actual policy. If there were optimization frictions, as in Chetty et al. (2011), then we might expect that
some of the vehicles located discretely above the thresholds are also bunching. Our raw data suggest that automakers
are able to manipulate weight precisely, because we see excess mass right at each threshold, which suggests that this
is not an important issue in our context.
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(the new fuel-economy standard period). Note that the new fuel-economy standard has more, and
narrower, notches. This mechanically lowers our estimates for E[Aw], because our conservative
approach assumes that automakers do not increase weight to move more than one step.3” Results
from the second policy follow the same pattern. First, we find statistical significant excess bunching
at all notches except for the 980 kg notch and 2280 kg notch for normal cars. At these two notches,
the estimates indicate that there is positive excess bunching, but the estimates are noisy because
there are not a large number of cars in this weight range. Second, similar to the estimates in the old
standard, we find substantial heterogeneity in the estimates between the notches. The proportional
excess bunching b ranges between 2.1 and 4.1 for normal cars and 1.7 and 3.5 for kei-cars, depending
on the notches. The estimated weight increases E[Aw] range between 50 kg to 92 kg for normal
cars and 47 kg to 56 kg for kei-cars. Finally, similar to our results for the old standard, the method
with the uniform assumption provides similar estimates to our main estimates.?®

Overall, the results in this section provide evidence that automakers respond to the attribute-
based fuel-economy regulation by changing the weight of vehicles. We find that about 10 percent of
vehicles in the Japanese car market manipulated their weight to bunch at regulatory notch points.
For these vehicles, the average weight increase induced by the regulation is 110 kg, which is about
a 10 percent increase in vehicle weight. This weight increase has welfare implications, as described
in our theory above, but it also has implications for safety-related externalities. Heavier vehicles
are more dangerous to non-occupants, and when this unpriced, the weight distortions we document
here exacerbate safety externalities. We briefly discuss this issue in the next subsection before

moving on to our panel analysis.

3.4 Safety-related welfare implications of weight manipulation

Our theory emphasized that attribute-basing creates a welfare loss because it causes a distortion in

the choice of the attribute. The welfare implications of attribute manipulation are altered when the

3T0Our panel data do suggest that some weight changes are large enough to cover two steps, but we have no grounds
for asserting what fraction of vehicles have been thus altered in our cross-sectional analysis, leading us to prefer
providing a reliable lower bound on weight changes.

38 As mentioned above, the new fuel-economy standards were introduced with a separate subsidy incentive that
applied to each specific car model. Therefore, the bunching in the new fuel-economy schedule may come from the
incentives created by either policy. The bunching in the old fuel-economy schedule comes only from the incentives
created by the fuel-economy standards because there was no separate subsidy incentive. We analyze the new policy’s
subsidy incentive in section 4.

33



attribute is related to another unpriced externality because the existence of a second externality
implies that the privately optimal choice of the attribute is not socially optimal.??

In the event of a traffic accident, heavier automobiles are safer for the occupants of the vehicle
(this is a private benefit) but more dangerous for pedestrians or the occupants of other vehicles
(this is an externality).’® Thus, the optimal attribute-based policy should taz vehicle size rather
than subsidize it. The implicit subsidy on vehicle weight in the Japanese fuel-economy standards
therefore exacerbate accident-related externalities.

We obtain a back-of-the-envelope estimate of the magnitude of this distortion by multiplying
our estimate of the average change in car weight by an estimate of the increased probability that
a heavier vehicle causes a fatality during its lifetime, times an estimate of the value of a statistical
life. Specifically, the weighted average increase across all cars that bunch at the notches in Table
2 is 109.62 kg. Anderson and Auffhammer (2014) estimate that an increase in vehicle weight of
1000 pounds (454 kg) is associated with a 0.09 percentage point increase in the probability that
the vehicle is associated with a fatality, compared to a mean probability of 0.19 percent. For the
value of a statistical life, we use $9.3 million, which comes from a study in Japan (Kniesner and
Leeth 1991), and is within the range of standard estimates from the United States.

Multiplying through, we calculate the welfare loss, per car sold, for a 110 kg weight increase
as: 110 * 0.0009 * (2.2/1,000) * $9.3 million = $2026 per car that changes weight in response to
the policy. Our analysis suggests that the excess bunching accounts for about 10 percent of cars
in the market. The Japanese car market sells around 5 million new cars per year, so we estimate
our aggregate annual welfare distortion to be 10 percent of 5,000,000 times $2026, which is $1.0
billion. For context, automaker revenue in Japan is roughly $150 billion per year, and Toyota’s
global revenue in 2013 was $210 billion. Equivalently, our calculation implies that each new cohort
of 5 million cars sold in Japan will be associated with an extra 103 deaths over the lifetime of those

cars, which compares to an annual fatality rate of roughly 6,000. Our calculations are meant only

3914t is straightforward to incorporate a second externality into our framework. In the simplest case when a causes
a separate externality, the optimal attribute-slope will be designed to create a Pigouvian tax on a. Attribute-basing
simply provides a second policy instrument, which is necessary for dealing with a second market failure.

40Tn principle, the externality risk may be partly priced through insurance or legal liability. White (2004), however,
argues that neither tort liability nor mandatory liability insurance prices safety externalities. In brief, tort liability
requires negligence, not just that one be driving a dangerous vehicle. Liability insurance generally coves the cost of
damages to a vehicle, but it is but a small fraction of the value of a life. In addition, rate differences across vehicles
are very coarse and reflect average driver characteristics in concert with vehicle attributes.
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as back-of-the-envelope estimates, but they make clear that the welfare distortions induced by the

Japanese policy are economically significant.

4 A Double Notched Policy and Panel Analysis

The previous section provides evidence of attribute distortions by focusing on cross-sectional varia-
tion in regulatory incentives. In this section, we exploit panel variation created by a policy change
to examine the welfare implications of attribute-basing, including both its potential benefits and
its limitations. In 2009, the Japanese government introduced new corporate average fuel-economy
standards (with target year 2015) as well as a separate incentive that applies to each specific car
model, rather than to an entire company’s fleet. If any individual model met the new fuel-economy
standard in years before the target year, consumers purchasing that car received a direct subsidy
of $1,000 (or, $700 for kei-cars). In addition, cars with fuel economy 10% and 20% higher than
the standard received a more generous incentive, in the form of reduced registration fees that were
normally levied on the consumer. This vehicle-specific subsidy created a “double notched” policy—
a car had to be above a step-function in the two-dimensional space of fuel economy and weight
to qualify for the subsidy. Vehicles that were redesigned to become eligible for the subsidy reveal
information about the relative costs of changing weight versus fuel economy. We use this revealed
preference information to estimate an adjustment cost function, which we explain further below,
that enables us to simulate the welfare effects of several policy alternatives.

Our procedures require panel data, which we create by linking vehicles in 2008 (before the policy
change) and 2012 (the last year of our data) using a unique product identifier (ID) that is included
in the regulatory data.*! We first match on product ID across years, which is often, but not always,
constant over time. If automakers change the product ID between years, we match by using model
name, displacement, drive type (e.g., four-wheel drive), and transmission (manual or automatic).
That is, we consider two cars sold in two different years to be the same if they have matching IDs,
or if they have exactly the same model name, displacement, drive type, and transmission. Entry

and exit imply that not all data points are matched, and we end with 675 matched records.*?

“1Product ID is narrower than model name. For example, a Honda Civic may have several product IDs in the same
year because there are Civics with different transmissions, displacements and drive types, each of which will have a
unique ID.

420ur matching procedure guarantees that we match the same model name, which avoids mismatching the panel

35



Figure 5: Fuel Economy and Weight before and after the Policy Change
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Note: This figure shows each vehicle’s fuel economy and weight before and after the introduction of the new
subsidy that was applied to each vehicle individually. The scatterplot shows each car’s starting values of fuel
economy and weight in 2008—the year before the policy change. For the cars that qualified for the new subsidy
in 2012, we also show “arrows” connecting each car’s starting values in 2008 with its values in 2012. The figure

also includes three step functions that correspond to the three tiers of the new incentive’s eligibility cutoffs.

We begin by plotting our raw data in Figure 5. The scatterplot shows each car’s starting values
of fuel economy and weight in 2008—the year before the policy change. For the cars that qualified
for the new subsidy in 2012, we also show “arrows” connecting each car’s starting position in 2008
with its position in 2012. The figure includes three step functions that correspond to the three
tiers of the new incentives. To qualify for the incentive, a vehicle had to be anywhere on or above
these lines in the two-dimensional space. The figure indicates that 1) vehicles that gained the

subsidy were usually modified so that they were just above the eligibility cutoff, 2) vehicles which

structure of the data. We take this approach because it provides transparent matching criteria. A potential drawback
of this approach is that firms may change some of their model names over time, yet they are targeting similar customer
segments. To address this concern, we also conduct our analysis by including unmatched cars from the first matching
criteria whenever we can match them using displacement, drive type, and transmission, while ignoring model names.
This procedure produces a slightly different set of matched data, but our final estimation results are very similar
regardless of which matching procedure is used.
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started off closer to the new standard were more likely to get the incentive—the “distance” to the
eligibility lines explain most of the variation in which cars get the subsidy, 3) most cars (but not
kei-cars) increased both weight and fuel economy in order to become eligible—that is, they moved
“northeast”.43

Kei-cars differ in a telling way. The attribute schedule is nearly flat in the weight distribution
inhabited by kei-cars, so they are subject to a nearly-flat (not attribute-based) policy.** Most
kei-cars that obtained the subsidy increased fuel economy, while decreasing weight slightly. This
accords with our theory: the steeper sloped portion of the standard induced substantial weight
manipulation, while the flatter sloped part of the standard did not.*?

In the appendix, we also show the corresponding arrows for vehicles that did not receive a
subsidy. Most of these vehicles had much smaller changes in fuel economy and weight, which
suggests that secular trends were modest during this period. We also find that some of these cars
increased weight to be at the weight notch underneath the subsidy cutoff lines. This is because,
in addition to the model-specific subsidy incentive, vehicles were still influenced by the corporate

average fuel-economy standards, which gave them an incentive to increase weight.

4.1 Discrete Choice Model of Vehicle Redesign

The descriptive panel data provide further evidence in support of our theoretical prediction that
attribute-based policies cause distortions in the secondary attribute. In this section, we use this
revealed preference information about the choice of fuel economy and weight to estimate a model
of an adjustment cost function of these two attributes, which we then use for policy simulation.
To see the logic of our approach, suppose that we observed data from a competitive market
in two time periods, the first of which has no policy, and the second of which features the model-
specific subsidy.#6 For each vehicle, the pair of fuel economy and weight that was chosen in the

first period would be welfare maximizing, given the firm’s production function and the tastes of its

43To highlight this, we color vectors that show an increase in weight in red and a decrease in weight in blue.

44The figure shows an approximate dividing line between lei-cars and other cars. Kei-cars are not regulated by
weight, but rather by engine displacement, so this division is not strict. The flatness of the schedule is due to the
front runner system and the fact that there was little variation in the top fuel efficiencies over this range of weight.

45Other factors may cause the kei-cars to be different. For example, they may be targeted at consumers who value
fuel economy more than average, which might make it more costly for kei-cars to increase weight than other vehicles.

46In reality, firms also had the corporate average fuel-economy standards. We begin with a simple model that
ignores this regulatory incentive and incorporate it in our second model.
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consumers. Any deviation from that characteristic bundle would lower private welfare. Graphically,
in a two-dimensional diagram like Figure 5, there would be level sets of the adjustment cost function
that surround the original choice of fuel economy and weight. The adjustment cost is zero at the
original bundle. It becomes larger as the new bundle gets further from the original, optimal one.

When the subsidy is introduced in the second period, there are two possibilities for a vehicle’s
new optimal bundle. The first case is that the vehicle changes the bundle of a and e to receive
the subsidy. This happens if the minimum adjustment cost to get the subsidy is lower than the
subsidy’s value. The second case is that the vehicle does not change its bundle, which happens if
the minimum adjustment cost to get the subsidy is higher than the subsidy’s value.

Figure 5 shows which vehicles changed in order to get the subsidy, and the vectors show the path
taken by those products that did change in order to gain the subsidy. If we make an assumption
about the functional form of the adjustment cost function, we can use these data to estimate
that function. We begin with the assumption that the loss function, denoted L is quadratic:
L = a(a, —a2)? + Ble, — €2)? + y(a, — a%)(en — €5), where a,, and e, are the second-period
characteristics, a? and ef are the first-period characteristics (which maximize private welfare), and
«, B and v are parameters to be estimated. This functional form implies that the level sets of the
adjustment cost function are ellipses centered around the private optimum (a2,e2).*” One such
ellipse will be tangent to the standard at the new optimum.

We describe the choice of the new optimum (ay, ;) for product n as the outcome of a discrete
choice over all of the possible (discretized) grid points in a by e space.*® We denote each grid point

as a unique value of z. The second-period optimization problem for product n is then to choose

“"Mathematically, an ellipse can be defined in an x-y plane by by (z — c1)? + ba(y — c2)® + bs(x — c1)(y — c2) = A,
where (c1, c2) is the centroid, b1 and by determine the width and height of the ellipse, bs determines its tilting angle,
and A is the level. In our adjustment cost function, the level set has (c1,c2) = (ap, e;). Note that the loss function
includes the welfare losses coming from both the demand side and supply side. The deviation from the initial optimal
a and e could induce additional costs for the supply side (e.g., higher production cost) and the demand side (e.g.,
lower consumer utility from the durable). Our model estimates the total welfare loss function; it does not separately
identify demand and supply parameters.

48 While weight and fuel economy are in principle continuous measures, the regulatory data are measured in discrete
units (10 kilograms for weight and tenths of a kilometer-per-liter for fuel economy), and all regulations are based on
these discrete units. In our data, the maximum and minimum of fuel economy (km/liter) are 7.6 and 30.0, and those
of weight (kg) are 730 and 2190. To make a choice set of the discrete choice problem, we use these maximum and
minimum values to create a rectangle of grid points that include all possible bundles for our data.
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the a, and e, values that maximize the loss function plus the subsidy:

Wi = ala, — a2)* 4 Ble, — ) + y(an — a)(en — €2) + 7 - 1(en > o(ayn)) + €nz, (7)

where 7 is also a parameter to be estimated, which represents the value of receiving the subsidy,
and e, is an error term specific to each vehicle n and each grid point 2.4 We assume that €, is a
Type-1 extreme value error term and estimate equation 7 via a logit. Logit coefficients are scaled
by the variance of the error term. When we interpret the parameters in terms of dollars, we rescale
them by the dollar value of the subsidy by dividing by 7 (Train 2009).

Our estimation benefits from quasi-experimental variation in choice sets caused by the second-
period policy. Even though all products face the same second-period policy, they each have a
different set of changes in a and e that would gain them the subsidy. This variation comes from
differences in starting points, from the introduction of new weight notches, and from the fact that
the changes in the standards are different across the weight categories. As a result, some vehicles
are able to make modest improvements in fuel economy to gain the subsidy, whereas others require
large changes. And, some vehicles can take advantage of a weight notch with small increases in
weight, but others require a large increase. These differences create a rich source of identification
for our estimation. The intuition is that the relationship between each product’s “distance” to the
subsidy cutoff lines and its probability of obtaining the subsidy identifies the subsidy coefficient
(1), and the “route” taken by products facing different compliance options identifies the coefficients
that determine the shape of the cost function («, 5 and 7).

Table 4 presents estimates from the logit for this specification, in column 1. We define AWeight
as each vehicle’s change in weight in 100 kilogram units and A(Fuel consumption) as its change
in liters per 100km (1/100km).5Y The coefficient on the interaction term is small and statistically
insignificant, which implies that the elliptical level sets of the adjustment cost function have limited
“tilt”. The first two coefficients (—1.25 and —1.15) are roughly the same, which implies that a

change in weight by 100 kg and a change in fuel consumption by one 1/100km result in approximately

49This formulation omits the payoff in the first-period, which is a constant and therefore does not influence choice.

50We use fuel consumption (1/100km) rather than fuel economy (km/liter) here because when regulators calculate
the corporate average fuel economy, they average each model’s fuel consumption rather than fuel economy (equiv-
alently, they harmonically average fuel economy). Thus, the control variables added in later specifications need to
measure fuel consumption to be correctly specified. All of our conclusions here are robust to estimating the models
with fuel economy instead. (Note that the distinction is irrelevant in logs.).
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the same loss of private welfare.®’ In Column 2, we also estimate the incremental effects of higher
subsidies by including the interactions between the subsidy dummy variable and each of the higher
subsidy dummy variable. The interaction with the highest subsidy dummy is estimated with large
standard errors because not many vehicles passed the highest subsidy’s thresholds, which is evident
in Figure 5.

Proposition 3 showed that, when the attribute slope is fixed, the relative responsiveness of a
and e to a change in the subsidy would dictate the degree to which the second-best subsidy rate
deviates from marginal benefits, which is the Pigouvian benchmark. The adjustment cost function
estimated here allows us to calculate the relevant terms. The adjustment cost function parameters
a, ( and v can be translated into the derivatives da/9s and de/0s. Measuring e in terms of fuel
consumption, the average attribute-slope of the policy is .44.52 If the policy were smooth with a
slope of .44, the second-best tax rate would be marginal damages (or benefits) times .83. That is,
the optimal corrective policy would be attenuated by 17%.

This simple specification provides transparent interpretations on the estimates of the adjustment
cost function. However, it considers only the product-specific subsidy and ignores the fleet-average
regulation. This is potentially important because the model-specific subsidy policy was introduced
at the same time that the new fleet-average regulation was announced. The effect of the new
fleet-average regulation might be minimal because it is legally binding only in the target year,
which is 2015. However, the new fleet-average regulation might affect firm decisions before 2015, as
automobiles are redesigned on a multi-year cycle and are likely redesigned before the target year.
Moreover, the bundles of a and e before the policy change may not be privately optimal if they were
distorted by the old fleet-average regulation. Even in the absence of the product-specific subsidy,
therefore, the optimal choice of a and e could shift between the two periods; i.e., the level sets of
the loss function could be centered around some alternative point, rather than around the original

choice of (a?,e?).

51For a car at the average fuel economy in our sample, this implies that a change in weight of 200 1b and a
change in fuel consumption of 4.5 miles per gallon result in approximately the same loss. In dollars, this means
that, for example, a change in weight by 100 kg (220 1b) induces a loss of $1621 = 1.24 - $1000/0.77 and a change
in fuel consumption by 1/100km (equivalent to 4.5 miles per gallon at the fleet average fuel economy) costs $1494 =
1.15-$1000/0.77. This is a reasonable order of magnitude. If gasoline costs $2.50 per gallon, a vehicle of average fuel
economy driven 12,000 miles per year for 13 years at a 5% discount rate would save around $2,100 in fuel costs from
a 4.5 mpg improvement.

52We estimate this as the best linear fit of the end point of the vehicle weight bins and fuel consumption standards.
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Table 4: Estimates of the Adjustment Cost Function

(1) (2) (3) (4)
(AWeight)2 -1.24 -1.25 -1.25 -1.25
(0.08) (0.08) (0.08) (0.08)
(AFuel consumption)? -1.15 -1.19 -1.21 -1.21
(0.07) (0.08) (0.08) (0.09)

AWeight x AFuel consumption 0.13 0.15 0.16 0.16
(0.11) (0.11) (0.11) (0.11)

1{Subsidy} 0.77 0.69 0.37 0.32
(0.15) (0.16) (0.18) (0.19)

1{Subsidy} x 1{Higher Subsidy} 0.39 0.26
(0.21) (0.21)
1{Subsidy} x 1{Highest Subsidy} 0.19 -0.08
(0.33) (0.34)

Shadow pirce for new policy () 0.45 0.44
(0.14) (0.15)
— Shadow price for old policy (—X) -0.11 -0.11
(0.12) (0.12)

Note: This table shows the estimation results of the discrete choice models in equation (7) in columns 1 and 2

and equation (8) in columns 3 and 4. The dependent variable is a set of the possible bundles of fuel consumption

and weight. The variable equals 1 if the bundle was chosen by product n and 0 otherwise. The weight and fuel

consumption variables are rescaled in the estimation—we define AWeight as each vehicle’s change in weight in 100

kilogram units and A(Fuel consumption) as its change in liters per 100km (1/100km). The estimation is based on

the panel data of 675 matched vehicle models.
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We can account for the effects of the regulations by augmenting our estimating equation. The
derivation is straightforward, but it is algebraically involved, so we relegate it to the appendix.
There, we show that the following estimating equation provides estimates of the parameters neces-

sary to identify the adjustment cost function, taking into account the effects of the regulations:

Ve = alan — a2)* + B(en — €2)* + v(an — a2)(en — €5) + Men — alan))

+71(en > 0(an)) — X(en — 0°(an)) + €nz, (8)

where A° is the shadow price of the original regulation and A is the shadow price of the new
regulation. By including (e, — o(ay)) (the position of the vehicle vis-a-vis the new policy) and
(en, — 0°(ay)) (the position of the vehicle vis-a-vis the old policy evaluated at the new choice
of a and e) in our estimating equation, we obtain estimates of these shadow prices from our
coefficients (along with «, /3, v and 7). Note that equation (8) is identical to equation (7) except
that equation (8) includes two additional variables that estimate the incentives created by the
fleet-average regulation. Furthermore, in the appendix, we show that the adjustment cost function
excluding the effect of the fleet-level regulation effects will be a(a, — a%)? + B(en — €2)? + v(an —

)(en —€2) + A°[el — 0°(al) — (en, — 0°(an))]. We can estimate that function from our coefficients

a n

n
after estimating equation (8).

Columns 3 and 4 of Table 4 present the estimation results with the regulatory control variables.
The addition of the regulatory control variables have very little impact on the coefficients on the
adjustment function. The subsidy coeflicient, however, becomes smaller in this specification. This is
because we are likely to overestimate the subsidy effect in columns 1 and 2 since we do not control
for the corporate compliance regulation. The changes in e and a are driven not only from the
car-specific incentive but also from the firm-level regulatory incentive. Columns 3 and 4 explicitly
control for both of those incentives. Importantly, while the coefficient on the subsidy affects the
dollar values of the adjustment cost, it does not have major impacts on the relative costs of changing
e versus a because the estimates on (Aa)? and (Ae)? are robust between the two approaches. In

the analysis of welfare implicates, we report our results based on both of the these approaches and

also provide the implications in terms of relative costs.??

53Though it is not our focus, we do note that this procedure also delivers an estimate of the shadow price of fuel-
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Our estimation in this section is based on strong assumptions. It assumes that the functions
determining taste and price are unchanged between the two periods. It is based on only our matched
observations, and does not model entry and exit. It also implicitly assumes that markups on each
vehicle do not change between the two periods. Relaxing this assumption would be an interesting
and important direction for future research, but it is well beyond the scope of this paper.?® Because
our estimation is based on these assumptions, we do not intend to claim that our procedure provides
a complete welfare analysis of the Japanese fuel economy regulation. Our procedure does, however,
(a) establish a method for analyzing double notched policies, which have not been studied in the
economics literature, and (b) enable us to use real data on vehicle redesign to illustrate the basic
economic implications of attribute-basing, which is what we pursue in the next section via policy

simulation.

4.2 Policy Simulations and Welfare Implications

We use our estimates of the adjustment cost function to simulate three policies: attribute-based fuel-
economy standards, a flat fuel-economy standard with no compliance trading, and a fully efficient
policy that is equivalent to a flat standard with compliance trading. Our aim is to highlight the
basic economics of attribute-basing with an example based on real data and policy.

The first policy schedule we consider is the actual new attribute-based fuel economy standard
schedule in Japan—the bottom schedule in Figure 5. The benefits of attribute-basing are limited
as there is more averaging (or trading) across products. Thus, to best highlight the benefits of
attribute-basing, we suppose that the schedule represents a mandatory minimum for each vehicle,

rather than for the fleet average. Appliance standards in many countries, including the United

economy regulations, which are of much interest to the literature. Our procedure differs from the existing literature
in leveraging panel data around a policy change to identify the shadow price, whereas existing work either examines
a specific policy loophole (Anderson and Sallee 2011) or uses static structural models (Goldberg 1998; Gramlich 2009;
Jacobsen 2013a). The estimate in column 3 implies a shadow price of $1,162 (= .45/.37 % $1000) per unit of 1/100km
car per. This translates into $258 per mpg per car at the average fuel economy in our sample. Our simple approach
does not account for imperfect competition, so we do not stress these results, but simply note that they are the same
order of magnitude as results found in Gramlich (2009) and Jacobsen (2013a) for the United Sates.

54For example, Berry, Levinsohn, and Pakes (1995) and the subsequent literature provide methods to estimate
markups in differentiated product markets in a static setting. The estimation requires that all non-price attributes
are fixed and not endogenously determined by firms. That is, the method can be applied to a static setting in
which vehicle attributes are fixed and exogenous to firm decisions, but it cannot be applied to our context, which
is concerned explicitly with how multiple product characteristics are altered in a dynamic setting. Relaxing this
assumption and incorporating the endogenous choices of product characteristics into complete structural models is
one of the key ongoing research topics in the literature (see, for example, Fan (2013)).
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States, are structured this way, and the Chinese vehicle standards initially imposed per-product
minima. Graphically, this policy requires all vehicles in Figure 5 to move above the lowest line.
Given each vehicle’s initial point and our estimates of the loss function L, we find the a and e that
achieves compliance at the lowest possible cost. We then calculate the resulting Aa, Ae, and AL
for each car’s new optimal point.?®

Table 5 reports results for this attribute-based regulation in the first row. Panel A is based on
the adjustment cost function estimated in the simple quadratic specification (column 2 of Table
4). The ABR lowers fuel consumption e by 0.76 1/100km on average, which is approximately a

56 While this improvement produces benefits from the

10 percent improvement in fuel economy.
externality, it comes at a private cost (a loss in L) of $1843 per unit sold, averaged across all model
types. This cost can be decomposed into a cost from Ae and from Aa, which is shown in the table.
Consistent with the vectors in Figure 5, the ABR causes a change in a even though the policy’s
target is e. The simulated ABR causes a 33 kilogram (73.37 1b) average weight increase, which is
about a 3 percent increase in weight. The cost associated with this weight increase accounts for
about 30% of the total cost of the regulation. This cost represents the Harberger triangle associated
with Proposition 1 in our theory. The table also reports the standard deviation in the marginal
cost of increasing e at the optimal choice across models, which is calculable from our loss function.
This is an important statistic for measuring the efficiency of the regulation because the benefit of
the ABR as compared to a flat standard is greater equalization of marginal costs of compliance.
Our second simulated policy is a flat fuel economy standard with no compliance trading. That
is, all cars have a common fuel economy standard regardless of their weight, and each of them has
to comply with the standard. To compare this policy with our first policy (the ABR), we find a flat
policy that generates exactly the same average improvement in e as the one in the first policy. We

find the flat policy that satisfies this condition numerically. The resulting standard is 8.04 1/100km

(12.4 km/liter and 29.2 mpg) for Panel A.57

55In our simulation, we assume that all vehicles stay in the market after the introduction of this simulated policy,
although in reality there can be entry and exit.

56In our data, the average fuel consumption in 2008 is approximately 7.6 1/100km, which is 13 km/liter and 30.5
miles per gallon. For a car with the average fuel consumption in 2008, an improvement of fuel consumption by 0.76
1/100km implies an improvement of fuel economy by 1.43 km/liter or by 3.35 mpg.

5TFor Panel B, the resulting flat standard is 8.09 1/100km (12.3 km/liter and 29.0 mpg). Again, we assume that all
products must comply and that there is no exit. In reality, such mandates would likely cause some products, which
are particularly far away from the standard, to exit the market, in both the flat and that attribute-based policies.
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Table 5: Welfare Implications of Attribute-Based Regulation and Alternative Policies

Ae: Aa: Cost from  Cost from  Welfare Cost S.D.
Fuel consumption  Weight Ae Aa cost relative  of MC
(liter /100km) (kg) ($/car) ($/car) ($/car) to ABR  ($/car)

Panel A) Based on the Loss Function without Controls for Compliance Regulation

ABR -0.76 33.28 -1319 -524 -1843 1.00 1805
Flat -0.76 0.00 -3590 0 -3590 1.95 4044
Efficient -0.76 0.00 -731 0 -731 0.40 0

Panel B) Based on the Loss Function with Controls for Compliance Regulation

ABR -0.74 35.43 -2584 -1391 -3975 1.00 3955
Flat -0.74 0.00 -7272 0 -7272 1.83 8614
Efficient -0.74 0.00 -1309 0 -1309 0.33 0

Note: This table shows the results of our three policy simulations: 1) attribute-based fuel-economy standards (ABR),
a flat fuel-economy standard with no compliance trading (Flat), and a fully efficient policy that is equivalent to a flat

standard with compliance trading (Efficient).

The flat standard has the benefit of not distorting weight.?® The flat standard, however, creates
many infra-marginal vehicles; that is, vehicles that are in compliance with the standard without
any change in fuel economy. These infra-marginal vehicles have a zero marginal cost of increasing
e, but do not change e at all, because there is no regulatory incentive. Other vehicles have very
large marginal costs of increasing e because they have to improve fuel economy by a large amount
in order to comply with the policy. This dispersion in marginal costs is inefficient, and it results in
welfare costs that are, on average, 1.95 times larger than the welfare costs of the ABR. To illustrate
this, Figure 6 plots the distribution of marginal costs of compliance under the ABR and the flat
policy. Under the flat policy, there are many more infra-marginal (zero marginal cost) observations,
and the remaining distribution is also more diffuse. The benefit of attribute-basing is the (partial)
harmonization of these marginal costs.

This harmonization, however, is incomplete and that makes attribute-basing an inefficient sub-
stitute for a compliance trading system. Our third policy, which is a flat policy with compliance

trading that generates the same Ae as the ones in the first and second policy, demonstrates this.

58The fact that weight does not change by a detectable amount is due to the fact that we estimate a very small
magnitude on the interaction term in our cost function. If that estimate were strongly positive or negative, the flat
standard could induce a decrease or increase in weight, but this would not represent a distortion.
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Figure 6: Distributions of the Marginal Costs of Compliance

1) Attribute-Based Regulation 2) Counterfactual Flat Policy
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Note: This figure shows the distributions of the marginal cost of compliance for the three simulated policies: 1) the
attribute-based regulation (left), 2) the counterfactual flat policy (right), and 3) the counterfactual efficient policy

(dashed line). The distribution of the efficient policy is the vertical line because the standard deviation is zero.

As shown in the theory section, this policy is equivalent to the efficient Pigouvian subsidy that gen-
erates the same average Ae. Under this policy, all cars improve fuel economy by the same amount
(because we assume a common cost function). This policy completely harmonizes marginal costs,
no products are infra-marginal, and therefore the total welfare loss is minimized. Because the
standard deviation of the marginal compliance cost is zero, its distribution collapses to a constant,
which we label in Figure 6. Finally, we calculate the efficient policy’s welfare loss relative to the
first policy (ABR). The last column in Panel A shows that the efficient policy would lower total
costs by 60 percent, while achieving the same improvement in fuel economy.

Panel B calculates the same statistics using the loss function that includes control variables for
corporate compliance regulation (column 4 of Table 4). In relative terms, all results in Panel A and
B come to essentially the same conclusion. Compared to the ABR, the efficient policy would lower

total welfare loss by 67 percent, and the flat policy would increase total welfare loss by 83 percent,
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for the same improvement in e. The difference between Panels A and B is their dollar values. The
estimates from the discrete choice model in Table 4 imply that we are likely to overestimate the
effect of the subsidy if we do not control for the corporate average regulation.’® Overestimating
the subsidy effect underestimates the dollar values of the adjustment cost function. This is why
we find lower dollar values for Panel B. However, importantly, this scaling issue has only a slight
effect on our illustration of the differences between the three policies because the scaling affects all
policies in the same way.

In sum, our simulation highlights three key policy implications consistent with our theoretical
predictions. First, ABR creates substantial distortions in the attribute, which accounts for 30% of
the total regulatory cost in our simulation. Second, a benefit of ABR is the partial harmonization of
the marginal costs of compliance. Relative to a counterfactual non-ABR flat policy, ABR produces
smaller dispersions of the marginal compliance costs between products. This smaller dispersion
produces a smaller total regulatory cost compared to a flat policy. Third, ABR is nevertheless an
inefficient substitute for a fully efficient policy such as a non-ABR policy with compliance trading
because the efficient policy does not create attribute distortions and fully equalizes the marginal

costs of compliance.

5 Conclusion

This paper explores the economic implications of attribute-based regulation. We develop a the-
oretical framework that highlights conditions under which attribute-basing is inefficient, and we
show that, under those conditions, the use of attribute-based regulation leads to distortions that
are concentrated in the provision of the attribute upon which targets are based. The model also
explores cases where attribute-basing may improve efficiency by equalizing marginal costs of regula-
tory compliance, but we emphasize that, even in those cases, the optimal attribute-basing function
deviates fundamentally from those observed in real world policies because it must balance efficiency
gains from cost equalization with the distortion it induces in the attribute.

Empirically, the paper demonstrates that distortions in response to attribute-based fuel-economy

standards in Japan are clearly present. We use both established cross-sectional tools based on the

59This is because the changes in e and a are driven not only from the car-specific subsidy incentive but also from
the firm-level regulatory incentive. Our second specification explicitly controls for both of the incentives.
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notch literature, as well as novel panel techniques that take advantage of a “double notched” pol-
icy, to demonstrate that the Japanese car market has experienced a notable increase in weight in
response to attribute-based regulation.

The theoretical framework makes a number of simplifying assumptions that could be relaxed
in future work. In particular, it is possible that attribute-based regulation, particularly when it
features notches, impacts firm pricing strategies for certain types of products. On the empirical side,
evidence of the responsiveness of attributes other than vehicle weight, which may be particularly

easy to manipulate, would be a valuable object of study for future research.
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Appendix A Proofs of propositions

Proposition 1. The first-best allocation can be achieved for a regulation with compliance trading

by setting o'(a) = 0 and choosing K so that A = ¢.

Under compliance trading, a single shadow price, denoted A will prevail. As shown in footnote

10, consumer n’s problem can be written as:

max U, =F,(ay, en) + I, — P(an, en) + A X (en, — o(an) — K).

an,En
The first-order conditions are:

ou, oF, or .,
da, Oan, B da,, —Ao(an) =0 9)
ou, OF, P

Se =g " 5ot A =0. (10)

The planner’s direct allocation problem (equation 1) is:

N N
gllg)sw = Z_:l {Fn(am en) - C(anv en) + I”} + ¢Zlen

The first-best optimization conditions are found by differentiation:

oW OF, B oCc
da, Oda, Oa,
ow 0F, oC

0 (11)

Under perfect competition, prices equal marginal costs. Then, it is apparent that the planner’s
and consumers’ first-order conditions are identical if and only if ¢’(a,) = 0 for all n and X\ = ¢.
The endogenous A will be an increasing function of k£ because of the convexity of the cost function.
Thus, some value of x exists for which A = ¢. Choosing that value of x and ¢’ = 0 makes the

consumers’ first-order conditions identical to the planner’s first-best.

Corollary 1. The first-best allocation can be achieved with a subsidy by setting o'(a) = 0 and
s = ¢.
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The planner’s conditions are the same as above. The consumer’s problem is now:

max U, =F,(an,en) + I, — P(an, en) + s X (en, — o(ay)).

Qn,En
The first-order conditions are:

ou, O0F, 0P
da, Oa, Oan
ou, OJ0F, 0P
e, Oe, Oey

The consumer’s conditions match the first-best if and only if 0/(a,) = 0 for all n and s = ¢.

Proposition 2. For a linear subsidy, when s is fized, the second-best attribute slope is:

558 _ s—¢ (2, 3*2)/”'
s (X, 88)/n

Taking s as fixed, the planner’s second-best choice of & solves:

N N
max W = Z {Fn(an,en) — Clan,en) + I} + QSZ en.

n=1 n=1

The first-order condition of this problem is:

OF, 0C  \Oen (0F, 0C\ Oy
zn:<aen _aen+¢> 06 +((‘9an—6an> o (15)

We substitute the optimality conditions from the consumer’s problem and pull constants out of the

summations:
Oey,

96

oay,
~ oo =0

(—s+ o) + (6s)

Dividing by n (to express the summations as averages) and rearranging yields the result.
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Proposition 3. For a linear subsidy, when & is fixed, the second-best subsidy rate is:

s _ 0 0
(. 8)/n 1—egs’
L-o <<zn§§>/n) :

where €% denotes the elasticity of y with respect to x for each pair of variables.

Taking & as fixed, the planner’s second-best choice of s solves:

N N
meW = Z {Fn(an, en) — Clan, en) + In} + ¢Z €n-
n=1

n=1

The first-order condition is:
Z 6Fn7§+¢ %Jr 8Fn700 8%_0
~ Oe, Oey, Os da, Oa,) 0s

We substitute the optimality conditions from the consumer’s problem, just as above, and rearrange.

To get the second equivalence, we substitute the definition of an elasticity and use the fact that,

when the standard binds, e, = da,, + k.

Proposition 4. When there is no compliance trading, and the constraint binds for all n, the optimal

NC

attribute slope & in the linear requlation is:

>, (An—X)(an—a)
~NC n

- dan dan ’
L=n Q& __ 4 Zn Ok
o n an—"

which is not zero unless a,, is perfectly uncorrelated with A\, under a flat standard.

The planner solves:

N N
max W = Z {Fn(an,en) — Clan,en) + I} + ¢Z en.
G,k n=1

n=1

The first-order condition with respect to & is:
Z OFH_OC 8an+ 3Fn_8£+¢ %_0
~ Oa, Oa, ) Ok Oe,  Oey, ok
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Using the optimality conditions from the consumer’s problem, this can be rewritten as:

da Oe
Z/\na—” + (¢ — ) a;: =0. (16)
When the constraint is binding, e, = da, + k. Total differentiation of this constraint yields a
relationship between da,,/0k and Oe,/Ok, namely that de,/0k = & - da,/0k + 1. Using this

substitution and rearranging equation 16 yields:

=¢|1+0 , (17)
n n
Jr

The first-order condition for ¢ is:
Z 8Fn_8C 8an+ 8F”_@+¢ 8en70
— \da, Oap) 06 Oe, Oey as

Substituting the consumer’s optimality conditions yields:

> 62) B (g T <,

n

Total differentiation of the constraint yields de/06 = 6da/0¢ + a. Substitution yields:

Z(&An)%‘? 4 (= +<z>)< %Cﬁ”jtan):o.

n

Canceling terms yields:

Z Anlpn + @0 aan

We then use the definition of the sample covariance of A\, and a,, to rewrite Y | Apan as y (A, —
N(an —a) +n~ > an Y., An, substitute equation 17 to rewrite the average shadow price, and
rearrange. This yields the result.

It is apparent that V¢ must be non-zero, unless the covariance between the shadow price and

the attribute is zero under a flat standard. Otherwise, there is a contradiction.
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A.1 Supplementary proofs

We provide here two additional proofs that describe the optimal & and A for the case without

compliance trading in a form that shows the relationship to Propositions 2 and 3 (which assume

compliance trading) clearly.

Proposition 5. When there is no compliance trading, and the constraint binds for all n, the optimal

average shadow price (denoted \NC') is:

S On—Xn)(en —Den) 52 (A —X,)(20n — Dan )
S\NC _ (b + n g _ n
T O L g2 ge
> %8)/n

The first-order condition (with optimal consumer conditions substituted in) is the same as

above, in equation 16. Rearranging yields:

~ aan o 8611 8en
72 T = 0L G g,
Then, we substitute for the )\n%% and )\n%% terms, using the definition of a covariance.
- da, Oay, - day, Oe,,

Y A=) | — — — A — | =
U[zn:( )<8/€ 8/<c>+ ~ 6/@] gzﬁzn: oK
- de, ey - Oe,,

A=) | — — — A
Z( ) ( ok Ok > * ~ ]

n

_l’_

Solving for the A terms that are outside of the covariance terms yields the following expression

for the average value of the shadow price at the optimum:

S0 On=An) (G2 )

(25 — —
day/n ~0da _ Oe
o (B8 &

\ =

+
3
3

The average shadow price is monotonically rising in &, so there will be a unique £N¢ that yields

the desired average shadow price.

As is the case with Proposition 4, the result is not in closed form. But, the merit of writing
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the result in this way is that it is clear when the non-compliance trading case collapses to the same
result as the compliance trading solution. If there is no correlation between the shadow price and
the derivatives of e, and a, with respect to the policy’s stringency, then the second term will be
zero and the non-trading result collapses to Proposition 2, where the only difference is that the

shadow price is an average, not a constant across products.

Proposition 6. When there is no compliance trading, and the constraint binds for all n, the optimal

attribute slope is:

den  Oen

o _ (A= 9)% 4 Zalnminllod— o)

N 4 Saln ) (GG

This is derived in the same way as the prior result. Start with the same first-order condition
for &, which is equation 15. Substitute in the optimality conditions for the consumer. Substitute
in the definition of covariance to eliminate the products of the shadow price and the derivatives of
an and e, with respect to . Solving for & then yields the result.

Again, this result is not in closed form. It is intended to highlight the relationship between
the non-trading case with Proposition 3. When there is no covariance between shadow prices and
the derivatives of the characteristics with respect to the attribute slope, the covariance terms drop
out and the formula collapses to the equation in Proposition 3 (the case with trading). As long as
there is a correlation between the shadow price and responses to the policy, the optimal policy will

involve some degree of attribute-basing.

Appendix B Welfare implications of notched attribute-based poli-
cies

Our theory models smooth attribute-based functions, that is, cases where the target function o(a) is

everywhere differentiable in a. The Japanese policy that we analyze empirically has notches, so that

o(a) is a step-function. Here, we briefly argue that the welfare implications from our theory carry

over to notched policies. We first consider “single notched” systems, like the Japanese corporate
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Figure 7: Isocost Curve with a Notched Attribute-Based Subsidy

average fuel-economy standard, and then discuss “double notched” systems like the model-specific
subsidy in Japan. In both cases, we discuss a subsidy policy rather than a regulation for notational
ease.

How does a single notched policy, where o(a) is a step function but the marginal incentive for e
is smooth, affect choice? We provide initial intuition graphically. Figure 7 shows an isocost curve,
that is, the set of values of a and e for which a consumer spends a constant amount on the durable
net of the subsidy, P(a,e) — s x (e — o(a)). The figure is drawn with several notches, at a’, a” and
a”. The solid blue line (drawn to be linear for the sake of illustration) shows the isocost curve
before any policy intervention; and the dashed red line shows the modified isocost curve for the
same expenditure on the good when there is a Pigouvian subsidy on e that has no attribute slope.

Next, the dashed grey line represents the isocost curve that would exist under a smooth attribute
policy. In the diagram, the grey line is drawn parallel to the original blue line, which represents
the case when policy makers draw the attribute slope to match existing isocost curves, thereby
preserving the original relative prices of a and e. This grey dashed line is not the final isocost
curve, however, when o(a) is notched. In that case, the solid black lines represent the isocost curve
for the consumer.

Importantly, the line segments on the final isocost curve are parallel to the red dashed line

representing the Pigouvian subsidy (i.e, if S(a,e) = se). As in the smooth case, the existence of the
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attribute function does not distort the price of a relative to x, which means that the distortion in
the choice of e will be only the indirect change due to a—it will be driven only by the utility and cost
interactions of the optimal choice of e and the distorted choice of a. Furthermore, because the line
segments are parallel in slope to the original Pigouvian line (and because we assume quasi-linearity)
the choice of a will not be changed at all by the attribute-basing if the consumer is choosing an
interior point along one of the line segments. All of the distortion is due to cases where a consumer
chooses a’, a” or a’”. That is, all of the distortion is evident from those who “bunch” at the notch
points.

We now provide algebraic analysis to flesh out the graphical intuition. For notational ease, we
focus on the case with only one notch, at a’, above which the subsidy subsidy jumps by amount

7 > 0. Then, the tax function can be written as:

s-e ifa<ad

S(a,e) = (18)
s-e+71 ifa>ad.
Denote by (a*, e*) the bundle chosen by a consumer facing a Pigouvian tax of s-e. If the consumer’s
choice under the smooth attribute policy had a* > a/, then the addition of the notch 7 is purely an
income effect. It has not changed the marginal price of a or e relative to each other or relative to x.
Given quasi-linearity, this means that the durable choice of a consumer with a* > @’ is unaffected
by the introduction of a notched attribute policy.

When a* < d’, the consumer will face a discrete choice of maintaining their original allocation
or switching to a’ exactly. They will not choose a > a’. To see why, suppose that they chose a value
under the notched policy, call it a strictly greater than a/. Then their optimization problem can be
written £ = F(a,e) — P(a,e) + I — G+ se+ 7+ p[a — a'], where there is a budget constraint as well
as an inequality constraint that @ > a/. If @ > a/, then the shadow price on the latter constraint,
1, is zero. In that case, the first-order conditions of the problem will be exactly the same as in
the benchmark case with no attribute notch, which by construction featured an optimal choice of
a* <d.

Thus, the consumer with a* < a' will either choose @ = a* (and not receive 7) or will choose

a = a' exactly. This has the empirical implication that all bunching should come “from the left”—
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changes in a in response to the notched incentives should always be increases in a.
If a consumer chooses a’, then their choice of e will solve:

max = F(d’,e) — P(d',e) + I — G + se + T, (19)

e

which has the same first order condition for e as the case without 7. Just as in the smooth case,
any distortion to the choice of e comes through “general equilibrium” effects, through which a
distortion in a shifts the marginal costs and benefits of e, which might result in a change in e.

2

The distortion in a will be analogous to a traditional Harberger triangle and thus rising in 7~.

The consumer will choose a = o’ if and only if:

—7 > P(d,€) — P(a*,e*) — (F(d',€) — F(a*,e")), (20)

that is, whenever the tax benefit is larger than the cost increase from moving from (a*,e*) to
(a/,€) minus the increase in utility from that change. The welfare loss can be written as a Taylor
expansion, which has the same intuition as a traditional Harberger triangle, just as in the smooth
case.

For our purposes, the point of this analysis is that, even when the attribute function is notched,
the focus of welfare analysis should be on how the policy distorts the choice of a relative to the
Pigouvian baseline, and that we should expect the distortion to result in bunching at exactly the
notch points in a. For empirical purposes, notched policies are useful in revealing the distortion
because it is generally easier to detect bunching at specific notch points than shifts over time in an

entire schedule.

B.1 Double notched policies

We next briefly describe the incentives created by a double notched policy, where the subsidy is not
everywhere differentiable in e or a. The simplest version of this policy is one with a single cutoff

for a, call it a’ and a pair of cutoffs for e, call them €’ and €”. The subsidy for such a system can
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Figure 8: Isocost curve with notches for both a and e

Shaded area
receives subsidy

be described algebraically as:

(

s; ife>e”

S(a,e) =< s, ife’" >e>e anda>ad (21)

0 otherwise.
\

An isocost curve for this case is shown in Figure 8. The unsubsidized budget constraint is drawn
as a faint line. The final budget constraint is represented by the bold black line segments, which
overlap in parts with the unsubsidized line. Allocations in the yellow shaded area receive some
subsidy. The subsidy is equal to s; for any allocation above €¢”. Note that there are large regions
of dominance in this diagram, where a subsidized point that has more of ¢ and more of e has the
same cost to the consumer as an unsubsidized bundle.

In the diagram, the red dashed line represents the simple Pigouvian tax. The values of s; and
so are chosen in this case to match the average Pigouvian subsidy for the relevant line segments,
but this need not be the case. Note that, if it is the case, then s; # so. In many policy examples,
§1 = S3, which may be suboptimal.

When there are notches in both dimensions, there can be bunching in the distribution of e, at ¢’
and e¢’. Above we argued that any change in a caused by attribute-basing relative to the Pigouvian

optimum would come from increases in a. But, in cases with notches in both dimensions, it is

60



possible that responses to the policy will lower a by inducing bunching at e’ or €¢”. This would
occur for cases like those represented by the sample utility curve in Figure 8, where a consumer’s
response to the notched subsidy is to bunch at ¢”. In that example, the indifference curve that
is tangent to the unsubsidized budget constraint features a higher initial choice of @ than at the

bunch point.

Appendix C Adjustment Cost Functions in Section 4

This section provides a detailed description of how we derive the adjustment cost functions in
Section 4. We analyze data before and after the policy change. For vehicle n, we denote a,, and e,
as the second-period characteristics and af, and e, as the first-period characteristics. We make the
assumption of perfect competition. Then, using the notations in Section 2, the welfare for vehicle n,
omitting regulatory incentives and dropping the numeraire, can be written as F,(ay, €,) —C(an, ).

First, consider a simple case, in which there is no fleet-average compliance regulation. Before
the policy change, there is no regulation. After the policy change, there is a car-specific subsidy for
cars that meet the standard (e, > o(ay)). Because the first-period characteristics af and e? are
at the private optimum, any deviation from that point creates a loss, which is L, = F,(an,en) —
Clan, en) —[Fn(a®,e2)—C(al,e?)]. The second-period optimization problem for product n is then

to choose the a,, and e, values that maximize the loss plus the subsidy:

Wy = Fo(an, en) — Clan, en) — [Fn(an,eo) — C(an,eo)] + 7 - 1(en > o(an)) + €nz,

n»-n n»-n

where L, = F,,(an,en) — Clan, e,) — [Fn(al,e) — C(a2,e2)] < 0 and L, is peaked at (ap,e,) =

nr-n n»-n

(a8, e?). That is, no changes in a and e would produce the lowest possible loss (defined to be zero).
This motivates us to begin with a quadratic functional form for L, in our estimation. In the first
specification in Section 4, we use a quadratic function: L, = a(a, — a2)? + B(en — €2)? + y(a, —

a?)(e, — €%) and estimate:

(0]
n
W, = ala, — a?L)2 + Blen — 62)2 +v(an —al)(en —er) +7-1(en > o(an)) + €nz,

which is equation 7 in Section 4.
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Second, consider the case with fleet-average compliance regulation. We denote A and \° as the
shadow prices of the fleet-average regulation at the second period and first period. Then, the payoff

to first period choices is Fj,(a2,€e%) — C(a%,€2) + X° x (e2 — 0°(a%)). In the second period, there

ns €n
is a new fleet-average regulation and vehicle-specific subsidy policy. Then, the payoff to second-
period choices is Fy,(an, e,) — Can, en) + A X (e, — o(ay)) + 7 - 1(ey, > o(ay)). The second-period
optimization problem for product n is then to choose the a, and e, values that maximize the
objective function:
Vi =Fp(an, en) — Clan, en) — [Fu(ap, ep) — C(ay, ep)]
+ Aen —o(an)) — A%(ep — 0°(ap)) + 7 L(en = o(an)) +ene
ot Alen — 0(an)) = Xo(€5 = 0°(a2)) +7 - Len = 0(an)) + ens,

where f,, = Fy(an,en) — C(an,en) — [Fn(al,ed) — C(al,e%)]. The problem with estimating this

n» €n n» €n
equation directly is that f,, is not peaked at (a,, e,) = (a9, €?), and we wish to use a functional form
approximation that requires knowing the location of the peak. That is, no changes in a and e would
not necessarily produce the lowest possible loss for f,,. This is because (a2, ) is the optimal in the
presence of the first-period regulation, rather than the private optimal in the absence of regulation.
To address this problem, we rewrite V,, by adding and subtracting \°(e,, — 0°(ay)). Note that
this is a mixed object—it is the second-period choice of a and e put into the first-period policy
function and shadow price:
Vi =Fp(an, €n) — Clan, en) — [Fu(ap, €)) — Clag, ep)]
+ Men —o(an)) = A°(e;, — 0%(ap)) + 7 - Len 2 o(an)) + enz
+ X(en — 0% (an)) — X(en — 0°(an))
=[Fn(an, en) — Clan, en) + X(en — 0%(an)) — Fulay, €3) + Clay, e5) — X(e, — 0°(ap))]
+7-1(en > o(ayn)) + Men — o(arn)) — X(en — 0°(an)) + €ns
=gn+ 7 1(en > 0(ay)) + Nen —o(an)) — A(en — 0% (an)) + enz
where g, = [Fp(an,en) — C(an, ) + X(en, — 0°(ay)) — Fr(al,e2) + C(a2,e2) — X\°(e2 — o°(al))].

nr-n n
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Importantly, g, is peaked at (an,e,) = (a2,e%). It is the adjustment cost function holding

n»-n

constant the old policy. Because (a2, €?) is the optimum in the presence of the old policy, g, <0

0,e2). That is, no changes in a and e would produce the lowest

and g, is peaked at (an,e,) = (a2
possible loss. This motivates us to have a quadratic functional form for g, in our second specification
in Section 4. We use a quadratic function: g, = a(a, — a%)? + B(en — €)% + y(a, — a%) (e, — €2)

and estimate:

Vi =a(an — a2)* + Blen — €3)* + v(an — af)(en — €5)

+ 7 1(en > 0(an)) + Aen — a(an)) — A%(en — 0°(an)) + €nz,

which is equation (8) in Section 4. Finally, we can recover f,, from g,. Note that g, = f, — [\°(e% —
°(a?)) — X\°(en, — 0°(ay))]. Therefore, once we have parameter estimates for g, and \°, we can
recover f, = gn+[\°(e —0°(al)) — A°(en, —0°(ay))]. This f, provides the adjustment cost function

for a, and e, excluding the effects of the old regulation.
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Appendix D Additional Figures and Tables

Figure A.1: Fuel-Economy Standard and Histogram of Vehicles: Kei-Cars (small cars)

Panel A. Years 2001 to 2008 (Old Fuel Economy Standard Schedule)
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Panel B. Years 2009 to 2013 (New Fuel Economy Standard Schedule)
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Note: “Kei-car” is is a Japanese category of small vehicles; the displacement of kei-cars have
to be less than 660 cc. Most kei-cars are not exported to other countries. Panel A shows the
histogram of vehicles from 2001 to 2008, where all vehicles had the old fuel economy standard.
Panel B shows the histogram of vehicles from 2009 to 2013, in which the new fuel economy

standard was introduced.
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Figure A.2: Fuel Economy and Weight before and after the Policy Change for Vehicles that Did
Not Receive a Subsidy

Panel A. Vehicles that did not receive a subsidy but bunched at weight notches
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Panel B. Vehicles that did not receive a subsidy and did not bunch at weight notches
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Note: This figure shows each vehicle’s fuel economy and weight before and after the introduction of the new
subsidy that was applied to each vehicle individually. The scatterplot shows each car’s starting values of fuel
economy and weight in 2008—the year before the policy change. We also show “arrows” connecting each car’s
starting values in 2008 with its values in 2012. The figure also includes three step functions that correspond to

the three tiers of the new incentive’s eligibility cutoffs.
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