
 
 
 
 
 
 
 
 
 

FUEL ECONOMY AND SAFETY:  
THE INFLUENCES OF VEHICLE CLASS AND DRIVER BEHAVIOR 

 

 
 

Mark R. Jacobsen* 
 

September 2012 
 
 
 

Abstract 
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1.  Introduction 
 

Automobile policy in the U.S., particularly regulation to conserve gasoline, 

changes the composition of the vehicle fleet with the potential to influence accident safety.  

Competing interactions in the fleet leave both the direction and magnitude of the safety 

impacts as empirical questions.1  Given the large annual cost of car accidents,2 I show how 

changes in accident rates importantly alter the efficiency ranking of alternative fuel-

economy policies.  I build on a rich literature investigating the welfare impacts of fuel-

economy standards and gasoline taxes (Goldberg [1998], Portney et al. [2003], Austin and 

Dinan [2005], Klier and Linn [2008], Bento et al. [2009], Busse, Knittel, and Zettelmeyer 

[2009], Anderson and Sallee [2011]). 

While gasoline taxes are often argued to provide greater efficiency along a number 

of margins, including safety, U.S. policy instead focuses on fuel economy limits as the 

primary means to trim gasoline consumption: new corporate average fuel economy 

(CAFE) standards are set to make large improvements through 2016, with an even more 

ambitious limit for 2025 that nearly doubles fuel economy relative to today’s fleet.3  The 

economics literature considering CAFE and safety is relatively sparse, but work by 

Crandall and Graham (1989) and the National Research Council (2002) suggests 

significant adverse safety costs.  Their estimates translate to more than $1.50 in safety cost 

per gallon of gasoline saved, rivaling the entire distortionary cost of CAFE appearing in 

recent studies.4  A group of time-series studies considering both recent trends and the 1978 

introduction of CAFE produce varied results, including the potential for safety benefits 

                                                
1 Reducing the number of large or heavy vehicles – substituting them evenly into the rest of the 
fleet – both conserves fuel and reduces the number of unevenly matched, risky accidents.  At the 
same time, smaller or lighter weight vehicles tend to offer their own occupants less protection, 
operating the other direction on overall risk. 
2 There were 37,261 U.S. traffic fatalities and more than 2.3 million injured in 2008 (NHTSA, 
2009). 
3 Environmental Protection Agency and Department of Transportation (2010), and The White 
House Office of the Press Secretary (2011). 
4 Jacobsen (2010) and Anderson and Sallee (2011) estimate the efficiency costs of CAFE at under 
$2.00 per gallon.  To the extent much of vehicle safety is external (see Footnote 10) the safety 
implications of changing vehicle choice are not fully captured. 
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from the policy.5  Finally, there is a long engineering and economics literature linking 

various vehicle attributes and safety: among the results a number of mechanisms offering 

CAFE the potential to improve safety have been identified. 

The model in this paper overcomes two key challenges in the existing literature:  

i) a set of sometimes disparate implications for policy depending on the particular vehicle 

attribute and type of accident studied, and ii) a challenge in separating risks of the vehicle 

from risks due to driver behavior and selection on vehicle choice.  My model also allows 

the novel ability to estimate accident rates in arbitrary counterfactual fleets after policy 

causes drivers to move across vehicles.  I show that my application to CAFE has 

economically important implications for how policy is implemented.  I believe the model 

can also be valuable in considering numerous other environmental and vehicle safety 

policies that change the composition of the fleet. 

I address the first challenge by taking a semi-parametric approach based on 

interactions of vehicle classes rather than individual attributes, nesting prior results on 

accident risk: Crandall and Graham (1989) and others find very strong protective effects of 

vehicle weight, suggesting adverse effects of CAFE.  Recent work by Anderson and 

Auffhammer (2011) instead focuses on the increased risks that weight imposes on other 

vehicles in accidents, demonstrating how they may be reduced using gasoline or weight-

based taxes.6  Another strand of the literature shows that the pickup truck and SUV classes, 

independent of weight, impose especially dramatic risk on others with only modest gains 

for their own occupants.7  Still other studies focus on attributes like height, wheelbase, and 

rigidity, often finding dramatic changes to risk across interactions of these features.8  In 

contrast to these approaches I group vehicles into a discrete set of ten classes that cut 

                                                
5 Khazzoom (1994), Noland (2004), and Ahmad and Greene (2005). 
6 The National Research Council (2002) and Kahane (2003) also provide broad summaries of the 
effects of weight.   
7 White (2004), Gayer (2004), Anderson (2008), and Li (2012) show evidence of the risks that 
pickups and SUV's impose on other classes. 
8 Kahane (2003) considers a list of attributes including height mismatch and frame rigidity. 
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flexibly across physical dimensions.9  I estimate a separate risk coefficient for each of the 

100 implied accident types, each class striking every other, allowing me to separate the 

protective and harmful effects of vehicles in each class without limiting the analysis to 

specific attributes.10  The matrix of estimates from my approach can be mapped back to 

individual attributes ex post, allowing me to demonstrate how my results fit into findings in 

the prior literature. 

The second key challenge is selection on unobservable driver attributes: not only 

might riskier drivers cluster in certain vehicles (biasing measures of how dangerous those 

vehicle models really are) but drivers will also move across models as they re-optimize 

according to the incentives placed by gasoline policy.11  The movement of drivers requires 

direct estimates of driver risk by vehicle type in order to conduct policy counterfactuals.  

The approach I contribute addresses these questions by leveraging common factors 

attributable to drivers or geography that appear across a system of equations describing 

single-vehicle and two-vehicle accidents.  I estimate unobserved driver risk while 

simultaneously considering the influence of physical features of vehicles on risk in 

accident interactions. 

Among other factors the unobserved riskiness of drivers by vehicle type captures 

the safety of roads in the driver’s geographical area, a tendency to drive drunk,12 and 

Peltzman-type effects where the protective nature of a vehicle itself may affect driving 

behavior.  The estimates address, for example, a puzzle in this literature related to 

                                                
9 The estimates are semi-parametric in the sense that no restrictions are placed on the combinations 
of physical characteristics available across vehicles.  For example the classes below broadly span 
weight, volume, height, passenger capacity, frame type, and engine size. 
10 My estimates therefore distinguish between internal and external costs if we can assign changes 
in the protective effect across cars as internal and changes in damage to other vehicles as external.  
However, health, life, and disability insurance (not conditioned on vehicle choice) make part of the 
protective effect external, while automobile liability insurance, psychic costs, and the potential for 
civil and criminal liability internalize part of the damage a vehicle is expected to impose on others.  
I therefore focus on total accident cost in the fleet when comparing policy counterfactuals. 
11 A number of approaches to the selection portion of this issue appear in the literature.  For 
example fatality risk can be measured conditional on an accident occurring (Anderson and 
Auffhammer [2011]), or using measures of induced exposure from police findings on fault. 
12 Levitt and Porter (2001) provide an innovative method to estimate drunk driving rates using 
innocent vehicles in accidents as control, but in most cases (including the present study) such 
personal characteristics are difficult to observe. 
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minivans: my model attributes their scarcity in fatal accidents largely to unobserved driver 

behavior rather than to the vehicles themselves.  To my knowledge these estimates of 

selection on driver risk are novel to the literature.  In the policy application this aspect also 

turns out to be pivotal to the welfare results. 

Application of the model leads to a set of results investigating the safety effects of 

fuel economy policy.  The estimated fleet-wide impact of a policy based on the historical 

CAFE rules is 149 additional annual fatalities per mile-per-gallon increment; a welfare 

cost of approximately 33 cents per gallon of gasoline saved.13  I then consider a “unified” 

fuel economy policy that combines size reductions within the car and truck categories with 

broader switching across the two categories.  When normalized to conserve the same 

amount of fuel this results in an increase in fatalities of only 8 per year, with a zero change 

included in the confidence band.  In each of the two policies I demonstrate how accounting 

for driver behavior, and the movement of risky drivers through the fleet as policy changes 

car choices, influences the results. 

Finally, I consider a “footprint” type rule similar to the provisions in fuel economy 

standards through 2016, and include alternative simulation approaches that address 

potential confounders.  Among these is a set of simulations modeling Peltzman (1975) 

effects where driver risk behavior changes based on the vehicle selected.  Further 

extensions to the simulation model could allow analysis in a variety of other settings.  For 

example the U.S. “cash-for-clunkers” program as described in Knittel (2009) or incentives 

to switch among new and used vehicles in Busse, Knittel, and Zettelmeyer (2009) produce 

changes in the fleet that may importantly alter the efficiency of policy.  

The rest of the paper is organized as follows:  Section 2 describes U.S. fuel 

economy policy and the role of safety.  Section 3 presents the model.  Sections 4 and 5 

respectively describe the data and empirical results.  Section 6 presents the policy 

experiments, combining my empirical results with a model of fuel economy regulation.  

Section 7 considers alternative specifications and addresses robustness. 
 

                                                
13 Parry and Small (2005) estimate the external cost of gasoline consumption to be about $1.00 per 
gallon in the U.S. 
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2.  Safety and Fuel Economy Regulation 
 

The importance of automobile safety is evident simply from the scale of injuries 

and fatalities each year.  In 2008 there were 37,261 fatalities in car accidents on U.S. roads 

and more than 2.3 million people injured.14  The National Highway Traffic Safety 

Administration (NHTSA) is tasked with monitoring and mitigating these risks and 

oversees numerous federal regulations that include both automobiles and the design of 

roads and signals. 

To motivate the concern about fuel economy standards with respect to safety 

consider the very rough estimate provided in NRC (2002): approximately 2,000 of the 

traffic fatalities each year are attributed to changes in the composition of the vehicle fleet 

due to the CAFE standards.  If we further assume that the standards are binding by about 2 

miles per gallon, this translates to a savings of 7.5 billion gallons of gasoline per year.  

When valuing the accident risks according to the Department of Transportation’s 

methodology this implies a cost of $1.55 per gallon saved through increased fatalities 

alone.15  This does not consider injuries, or any of the other distortions associated with fuel 

economy rules, yet by itself exceeds many estimates of the externalities arising from the 

consumption of gasoline.16 

Conversely, a finding that accident risks improve with stricter fuel economy 

regulation would present an equally strong argument in favor of more stringent rules.  The 

magnitude of the implicit costs involved in vehicle safety motivate the importance of a 

careful economic analysis, and mean that even small changes in the anticipated number of 

fatalities will carry great weight in determining the optimal level of policy.   
 
 
 
 
 
                                                
14 NHTSA (2009). 
15 The Department of Transportation currently incorporates a value of statistical life of $5.8 million 
in their estimates.  This is conservative relative to the $6.9 million used by EPA. 
16 See Parry and Small (2005). 
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Current regulation  
 

U.S. fuel economy regulation is in transition, with the rule through 2016 now 

complete (Environmental Protection Agency and Department of Transportation [2010]), 

while regulatory provisions beyond 2016 remain to be determined.  I consider three 

possible regulatory regimes, each of which produces a unique effect on the composition of 

the fleet.  The resulting impacts on the frequency of fatal accidents are similarly diverse: 
 

1)  The corporate average fuel economy (CAFE) rules:  Light trucks and cars are separated 

into two fleets, which must individually meet average fuel economy targets.  No direct 

incentive exists for manufacturers to produce more vehicles in one fleet than the other.  

Rather, the incentives to change composition occur inside each fleet:  selling more small 

trucks and fewer large trucks improves the fuel economy and compliance of the truck fleet.  

The same is true inside the car fleet.  This produces a distinctive pattern of shifts to smaller 

vehicles within each fleet, but without substitution between cars and trucks overall. 
 

2)  A unified standard:  This type of standard was introduced in California as part of 

Assembly Bill 1493, and is under consideration federally.17  It regulates all vehicles 

together based only on fuel economy.  This includes the effects above while 

simultaneously encouraging more small vehicles, broadly shifting the fleet away from 

trucks and SUV’s and into cars.  
 

3)  A “footprint” standard:  This new type of rule is in place federally for the years 2012 - 

2016 and is also expected for the years 2017 through 2020.  It assigns target fuel 

economies to each size of vehicle (as determined by width and wheelbase), severely 

limiting the incentives for any change in fleet composition.  As such it increases the 

technology costs of meeting a given target, but was required in the hopes of mitigating the 

costly safety consequences discussed above.18 
                                                
17 Strictly speaking the California bill preserves the fleet definition, but allows manufacturers to 
“trade” compliance obligations between fleets in order to achieve a single average target.  The 
trading between fleets aligns incentives for all vehicles, making the rule act like a single standard. 
18 NHTSA (2010) discusses the safety rationale for the footprint rule.  Technology costs are higher 
because most improvement must be achieved through technology; the earlier rules allow part of the 
improvement to come from technology and part via fleet composition. 
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3.  A Model of Accident Counts 
 

I model the count of fatal accidents in each vehicle class, normalizing by billion 

miles traveled.  Vehicle classes will be a set of J categories covering the entire vehicle 

fleet; the physical characteristics of each vehicle class are interesting in policy examples 

but do not enter the general model specification. 

Define Zij as the count of fatal accidents where vehicles of class i and j have 

collided and a fatality occurs in the vehicle of class i.  The counts will be asymmetric, that 

is Zij ≠ Z ji , to the degree that some classes impose greater risk on others.  If a fatality 

occurs in both vehicles in an accident then Zij and Zji are both incremented, though this will 

be relatively rare in the data. 

The total count of fatal accidents in class i vehicles is then: 

 
(fatalities in class i) = Zij

j∈J
∑  (3.1) 

 

where J represents the set of all vehicle classes.  By changing the order of subscripts we 

can similarly write the count of fatalities that are imposed on other vehicles by vehicles of 

class i: 
 

(fatalities imposed on others by class i) = Z ji
j∈J
∑  (3.2) 

 

Total counts of fatal accidents reflect a combination of factors influencing risk and 

exposure.  I divide the counts into three multiplicative components, of interest individually 

and for use in constructing policy counterfactuals:  1) The risk coming from the behavior 

of drivers in each vehicle class, 2) risk coming from physical vehicle characteristics alone 

– I will term this the “engineering” risk, and 3) the miles driven in each class.  The 

combination of these three elements determines the number of fatal accidents of each type:  

Intuitively, the greater the driver recklessness, engineering risk, or miles driven, the more 

fatal accidents we should expect to see of type Zij. 
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Define the three components using: 
 
αi The riskiness of drivers selecting each vehicle class i (in estimation this will appear 

as a fixed effect on driver behavior for each class; in counterfactual simulations it 
will be allowed to vary as drivers switch across classes) 

 
βij The risk per mile of a fatality in vehicle i when vehicles from class i and class j are 

driven by average drivers  (βij will estimated for all possible combinations of 
vehicles) 

 
ni The number of miles driven in vehicles of class i (available as data below)   
 

I normalize the measure of driver riskiness, αi, to unity for the average driver so 

that it functions as an accelerator multiplying the overall risk per mile driven.  For 

example, a value of α i = 2  corresponds to a driver who generates twice the average fatality 

risk for each mile they drive.  High values of αi come from a tendency of class i owners to 

live in locations with dangerous roads, travel at high risk times of day, drive recklessly, 

distracted or drunk, or have any other characteristic (observable or unobservable) that 

increases the risk per mile of fatal accidents.  Notice that this means αi can operate either 

through an increase in the number of collisions or through an increase in fatality risk after 

a collision has occurred; the distinction is not needed to consider total fatalities in the fleet. 

Combining this definition of dangerous driving behavior with the engineering 

fatality risk results in: 
 

Probability of a fatal accident in vehicle i |  i, j  driven 1 mile =α iα jβij  (3.3) 
 

The probability of a fatal accident for vehicle i, per mile traveled by i and j, is 

modeled as the product of the underlying engineering risk in a collision of that type, βij , 

and the parameters representing high risk coming from the drivers involved, αi and αj. 

The multiplicative form contains an important implicit restriction: behaviors that 

increase risk are assumed to have the same influence in the presence of different classes 

and driver types.  I argue that this is a reasonable approximation given that most fatal 
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accidents result from inattention, drunk driving, and signal violations;19 such accidents 

give drivers little time to alter behavior based on attributes of the other vehicle or driver. 

Finally I include the effect of the number of miles traveled in each class, ni, and 

further subdivide miles and accidents across time and location with the subscript s.  If 

pickup trucks are less common on urban roads, or minivans tend to be parked at night, 

there should be differences in the number of accidents involving these vehicles across time 

and space.  In the estimation below I divide the data into bins s according to time-of-day, 

average local income, and urban density – factors that appear to significantly influence 

both the composition of the fleet and the probability of fatal accidents.   

The effect of miles driven in bin s on the number of fatalities again takes a natural 

multiplicative form: If twice as many miles are driven in a certain class then we expect 

twice as many cars of that class to be involved in an accident: 
 
E(Zijs ) = nisnjsα isα jsβij  (3.4) 

 

I also add the bin s subscript to α since the risk multiplier may also differ across time and 

space.  Broadly speaking, data will be available on Z and n leaving α and β to be 

estimated.20 

The key challenge in this literature becomes clear in (3.4):  Since the αi terms 

include unobservable driving behavior, and the engineering risks β are also to be 

estimated, we need a way to separate the two.  Is a vehicle class dangerous because of its 

engineering characteristics or do the drivers who select that class just happen to have high 

risk (from factors like the location where they live or poor driving habits)? 

The method I propose here identifies driver risk via a second equation describing 

single-car fatalities, using the assumption that overall driver risk (in αis) will influence both 

equations.  I define the count of fatal single-car accidents in vehicle class i in location s as 

Yis , such that: 
 

                                                
19 NHTSA (2008). 
20 Details are provided in Section 5, but I specifically will observe Zijs and ni.  The aggregation to ni 
means differences in αi across bins will not be observed, but recovery of an average αi for each 
class is still possible.  
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E(Yis ) = nisα isλsxi  (3.5) 

 

The four parameters are: 
 
nis  (As above) The number of miles driven in class i and bin s 

α is  (As above) The riskiness of drivers or the locations they live in  

λs  Controls the relative frequency of fatal single-car accidents separately for each bin 

xi  The relative fatality risk to occupants of class i in a standardized collision 
(measured using crash test data, or in an alternative specification through additional 
restrictions on the β matrix) 

 

The key identifying restriction across equations (3.4) and (3.5) is that dangerous 

locations or behaviors (in α) that differing across classes enter both the risk of single-car 

accidents and the risk of accidents with other vehicles.  This may be a better assumption 

for some factors (geographical location, drunk driving, recklessness) than others (falling 

asleep) but I will argue below that the estimates closely match intuition on driver safety 

generally.  λs allows flexibility in the relative frequency of single and two-car accidents 

(single car accidents are more frequent at night, for example), and importantly relaxes the 

stringency of the identifying restrictions; Section 5 on estimation provides more intuition 

on the exact nature of the restriction and the role of λs in the context of my data. 
 

 

Comparison with other models of safety 
 

Much of the work focusing on the influence of vehicle characteristics on safety (see 

Kahane [2003]) has taken a parametric approach in an attempt to isolate the effect of 

weight alone.  By assigning a complete set of fixed effects for all possible interactions, βij , 

I can still recover information about vehicle weight while adding considerable flexibility in 

form and the ability to capture other attributes that vary by class.  The cost to my approach 

comes in the degree of aggregation: I will consider 10 distinct classes, or 100 βij  fixed 

effects.  Since each class contains a variety of vehicles I must assume that changes caused 

by regulation inside a class are of relatively small importance compared with the changes 
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across classes.  The assumption will have the most influence at the extremes of the 

distribution, for example downsizing within the compact class and within the large pickup 

class.  In the context of safety these biases will cancel out to some degree, though this 

remains an important caveat. 

Wenzel and Ross (2005) describe overall risks using a similarly flexible class-

based approach to vehicle interactions, but importantly do not model driving safety 

behavior and so are unable to separate it from underlying engineering risk.  For purpose of 

comparison I provide estimates of a restricted version of my model where I set all the αi’s 

equal.  The parameter estimates turn out to be quite different, so much so that the primary 

economic and policy implications are reversed in sign. 
 
 
4.  Data 
 

I assemble data on each of the three variables needed to identify the parameters of 

(3.4) and (3.5): 
 

• Comprehensive count of fatal accidents, Zijs and Yis  

• The number of miles driven in each class, ni 

• Crash test data to describe risks in single-car accidents, xi 

 
Fatal accident counts 
 

The count data on fatal accidents is the core information needed to estimate my 

model.  I rely on the comprehensive Fatal Accident Reporting System (FARS), which 

records each fatal automobile accident in the United States.  The dataset is complete and of 

high quality, due in part to the importance of accurate reporting of fatal accidents for use in 

legal proceedings.  If such complete data were available for accidents involving injuries or 

damage to vehicles it could be used in a framework similar to the one I propose, but 

reporting bias and a lack of redundancy checking in police reports for minor accidents 

make those data less reliable. 
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The FARS data include not only the vehicle class and information about where and 

when the accident took place (which I use to define bin s in the model), but a host of other 

factors like weather, and distance to the hospital.  While the additional data is not needed 

in my main specification (which captures both observed and unobserved driver choices in 

fixed effects) I will make use of a number of these other values to investigate the 

robustness of my estimates. 

I define the bins s using three times of day (day, evening, night), two levels of 

urban density, and three levels of income in the area of the accident.  For the latter two 

items I use census data on the zip codes where the accidents take place.  This creates 18 

bins in my central specification that, together with time, produce the replicates on Zij used 

for estimation.  The key parameters of interest are at the vehicle class, rather than bin, level 

and the selection of bin divisions turns out to have a relatively small impact empirically.  

An exploration of both more and less aggregate bin structures is provided in Appendix B. 

For my main specification I pool data for the three years 2006-2008 and use weekly 

observations on fatal accident counts.  I experiment with month-of-sample fixed effects 

and a non-overlapping sample of data from 1999-2001 and find no important differences in 

results.  The selection of the time period is to match the timing of data on vehicle 

quantities and miles driven (see below), observed in 2001 and again in 2008.  The pooling 

provides additional power in estimation. 
 
 
Miles driven 
 

I use total vehicle miles traveled (VMT) in each class as a measure of the quantity 

of vehicles of that class present on the road.  This data is available from the National 

Household Transportation Survey (NHTS), which is a detailed survey of more than 20,000 

U.S. households conducted in 2008.  While I do have some information about the location 

of the VMT (for example the home state of the driver) I do not observe other important 

aspects like the time of day or type of road where the miles are driven. Fortunately, as 

shown in Section 5, it is possible to recover values for the parameters defining driver 
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behavior using only the total VMT for each class: differences in bin s level VMT are 

absorbed in fixed effects. 

While the NHTS enjoys wide use it remains subject to a number of important 

caveats: in my application sampling or reporting bias correlated with driver risk could bias 

the estimates.  Many of the characteristics used in constructing the sample weights for the 

NHTS are also associated with safety (age, income, education level, and, of particular 

relevance here, location and geography).  This offers some reassurance on the accuracy of 

aggregate VMT reported by class.  Sampling bias at the level of individual models or 

localities is also of less concern in my application to the extent it remains uncorrelated with 

my aggregate measure of class.  Finally, drawing from the NHTS enables me to make a 

direct match with the FARS data using common make and model codes assigned by 

NHTSA.  
 
 
Crash test data 
 

NHTSA has performed safety tests of vehicles using crash-test dummies since the 

1970’s, with recent tests involving thousands of sensors and computer-aided models to 

determine the extent of life-threatening injuries likely to be received.  The head-injury 

criterion (HIC) is a summary index available from the crash tests and reflects the 

probability of a fatality in actual accidents very close to proportionally (Herman [2007]).  

This is important for my application since equation (3.5) requires a measure that reflects 

proportional risk across vehicle types: if the HIC for compact cars is twice that of full size 

cars I should expect to see twice the number of fatal accidents all else equal. 

I have assembled the average HIC by vehicle class for high-speed frontal crash 

tests conducted by NHTSA over the period 1992-2008.21  These tests are meant to simulate 

typical collisions with fixed objects (such as concrete barriers, posts, guardrails, and trees) 

that are common in many fatal single-car accidents.  The values for each class are included 

in Table 1.  Single-vehicle accidents in small pickup trucks, the most dangerous class, are 
                                                
21 Specifically, I include all NHTSA frontal crash tests involving fixed barriers (rigid, pole, and 
deformable) and a test speed of at least 50 miles per hour.  This filter includes the results from 945 
tests. 
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nearly twice as likely to result in a fatality as those occurring in large sedans, the safest 

class, all else equal.  

The crash test data is more difficult to defend than my other sources since it relies 

on the ability of laboratory tests to reproduce typical crashes and measure injury risks.  I 

therefore offer an alternative specification in Section 7 that abstracts altogether from crash-

test data.  It produces similar results but offers less precision since it places more burden 

on cross-equation restrictions. 
 
 
Summary statistics 
 

I define 10 vehicle classes spanning the U.S. passenger fleet, including various 

sizes of cars, trucks, SUV’s, and minivans.  Table 1 provides a list and summary of fatal 

accident counts, reflecting fatalities both in the vehicle and those of other drivers in 

accidents.  The VMT data is summarized in column 3, displaying the total annual miles 

traveled in each class.  Column 4 describes single-vehicle fatality rates per billion VMT 

while the final column displays the HIC data for each class.  The different patterns in risks 

measured by the HIC and fatality rates observed in the data highlight the importance of 

controlling for driver location and behavior in the model. 

Table 2 describes the data on fatal accidents, now divided according to bin s.  The 

first three columns indicate total fatal accidents in my sample, summarizing only one and 

two-car accidents.  Column 4 shows variance at the weekly level used in estimation.  

Columns 5 and 6 respectively display the fraction of accidents that involve one car and 

where the fatality is in a light truck.  More than half of fatal accidents involve only one car.  

Finally, the last two columns show the accident types with the highest relative frequency.  

Pickups are involved in the most single-car accidents per mile everywhere except in the 

highest income cities.  Two-car accidents are more varied, with luxury vehicles involved in 

the evening and at night, and compacts much more likely to have a fatality (the vehicle 

with the fatality is listed first).  A summary of the accident rates in all 100 possible 

combinations of classes is provided in Table 3, and is discussed in detail in Section 5 

below. 
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5.  Estimation  
 

Building on the model of accident counts outlined in Section 3, this section now 

turns to identification and estimation of the parameters.  I will take xi, ni, Yis, and Zijs as 

data and wish to estimate αι, βij, and λs.  The equations in Section 3 representing single and 

multi-car accidents are again: 
 

E(Yis ) = nisα isλsxi  (5.1)  
E(Zijs ) = nisnjsα isα jsβij  (5.2) 

 

Estimation first requires a reduction of the parameter space: since I do not observe 

miles driven, nis, at the bin s level I also cannot estimate each αis separately.  Instead, I 

combine the effect of nis and αis into a single parameter for estimation: δ is ≡ nisα is .  This 

approach maintains flexibility across location and class in estimation, while still permitting 

calculation of average risks by class when applying data on ni ex post.22  δis is identified up 

to a constant so there are 10 ⋅18 −1( ) = 179  of these flexible bin-by-class effects.  The 

remaining parameters in the model are the 100 βij’s and 18 λs’s.  I observe the HIC score 

by class, xi, and weekly counts of Yis and Zijs; pooling 3 years of data provides 2,808 

observations on each of the 110 fatal accident types for a total of 308,880 counts. 

The model for estimation is: 
 

 

Yis  Poisson(ω is )
E(Yis ) =ω is = δ isλsxi

 (5.3) 

 

 

Zijs  Poisson(µijs )
E(Zijs ) = µijs = δ isδ jsβij

 (5.4) 

 

                                                
22 In particular, define ni as the aggregate quantity (miles) for class i such that ni = nis

s
∑ .  Then 

δ is
s
∑ ni = nisα i

s
∑ ni =α i . 
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The Poisson also dictates the variance of the observed counts, coming from the underlying 

binomial.23  A generalization allowing an additional source of error is discussed below and 

produces very similar estimates in this setting. 

 
Identification 

Equations (5.3) and (5.4) are estimated in combination since neither of the two is 

identified in isolation: λs and δis cannot be separated in the first equation and δis and βij 

cannot be separated in the second.  This reflects the key identification challenge: δis 

contains unobserved location and driving safety behavior which we wish to separate from 

risks due to the vehicles themselves (assuming an average driver and location) represented 

by βij.   

Algebraically, separate identification of the parameters is possible via the presence 

of δis in both equations and the implied cross-equation restrictions.  More intuitively, the 

assumption I need is that factors causing δis to differ (for example a tendency to drive 

recklessly or in dangerous locations) simultaneously influence risk of fatal single car 

accidents and fatal accidents with other cars.  The λs parameters in (5.3) allow me to 

importantly weaken the strength of this assumption: factors contributing to single-car 

accidents in bin s that are common across classes are absorbed by λs.24   

As an example, consider the role of dangerous rural highways: to the extent the 

number of single-car fatalities across classes in the rural bins is higher than would be 

predicted by the HIC scores, xi, this will be captured in a large λs for those bins.  If after 

taking out λs there remains a particular excess of fatal accidents among pickup trucks 

(which is the case in the data), then the δis parameters on pickup trucks will be increased.  

The assumption across equations is that this part of the variation, the risk multiplier 

specific to pickup trucks in the rural bins, also multiplies the risks they impose in two-car 

                                                
23 If  Yis  Poisson(ω is )  then Var(Yis ) = E(Yis ) =ω is . 
24 Separate identification of an increase in λs from an increase in each of the δis’s for that bin comes 
via the overall frequency of single- vs. multi-car fatal accidents in that bin and the fact the βij is 
defined independent of bin: if a particular bin experiences an unusually large number of single-car 
accidents but an average number of multi-car accidents then a large value of λs and average values 
for the δis’s will fit the data best. 
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accidents.  Since λs is common to classes within a bin my assumption is violated, for 

example, if the connection between single- and two-car accidents is stronger for some 

classes than others.  A variety of alternative bin structures, influencing the degree and type 

of flexibility allowed by the λs parameters, are explored in Appendix B.  The policy results 

are robust. 

As a final note on identification, it may be useful to consider a simplified version of 

(5.3) that abstracts from the λs parameters:  We would then have E(Yis ) = δ isxi .  In this 

setting δis would just be the count of single-car fatalities divided by the number we would 

expect to have based on crash-test results.  In this sense the δis parameters are a measure of 

residual riskiness, allowing them to include unobserved variation in geography and driving 

at the bin-class level. 
 
 

Overdispersion and Error 

 The Poisson specification above assumes that the only source of deviation in the 

count of fatal accidents across observations comes from an underlying low-probability 

binomial event, here the binomial occurrence of a fatality for each vehicle mile driven.  

However, additional sources of error can create overdispersion where the counts will differ 

by more than the underlying binomial would imply.  The negative binomial generalization 

of the Poisson allows overdispersion to be modeled explicitly, adding an error component 

and associated variance parameter.  I follow the specification of the negative binomial 

model given in Cameron and Trivedi (1986); the full model appears in Appendix A along 

with further discussion of error. 

In my application, estimation of the negative binomial model produces parameter 

estimates that are nearly unchanged relative to the simple Poisson (a comparison appears in 

the appendix).  However, a likelihood-ratio test does reject the Poisson and so I report 

results from the more general negative binomial throughout. 
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Results from a restricted model 
 

It provides a useful comparison to first consider a restricted model where driving 

behavior and underlying engineering safety are combined into a single parameter.  The 

next subsection will display the full model, where the effects are separated.   

In the restricted model I retain the full set of fixed effects on bins s and vehicle 

interactions βij , but simply drop the terms for driver behavior: 
 

 

Zijs  Poisson( µijs )

E(Zijs ) = µijs = nis njs βij

 (5.5) 

 

n and β are defined as before; the ~ modifier indicates the restricted model. 

Table 3 presents the restricted estimates of  
βij .  The parameters have a simple 

interpretation:  they are the total fatality rates in interactions between each pair of classes.  

The most dangerous interaction in the table occurs when a compact car collides with a 

large pickup truck, resulting in 38.1 fatalities in the compact car per billion miles that the 

two vehicles are driven.  The chance of a fatality in the compact in this case is about 3 

times greater than if it had collided with another compact, and twice as large as if it 

collided with a full-size sedan.  However, this table cannot address the possibility that 

some classes contain more fatalities due to dangerous driving or locations, as opposed to 

any inherent risk in the engineering.   

Biases of this sort are particularly evident when examining minivans in Table 3.  

Minivans are much larger and heavier than the average car yet appear to impose very few 

fatalities on any other vehicle type, even compacts.  This is noted as a puzzle in the 

engineering literature (Kahane [2003]) since simple physics suggests minivans will cause 

considerable damage in collisions.  I find below that this is resolved by allowing flexibility 

in driving behavior; minivans tend to be driven much more safely which accounts for the 

low rate of fatalities. 
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Results from the full model 
 

By combining (5.3) and (5.4) my full model is able to separate the accident rates 

shown in Table 3 into two pieces:  The portion attributable to driver location and behavior, 

and the portion that comes from the physical characteristics of the vehicles themselves.  

The semi-parametric form allows me to be agnostic about which physical attributes of the 

vehicles cause the changes in underlying safety; the influence of any one characteristic of 

interest (for example vehicle weight, or category definition as a light truck) can be easily 

calculated ex post from my full matrix of estimates. 

My central estimates appear in Table 4.  The first row displays estimates of α i , or 

the average across bins of the driving safety risks among people who select vehicles in 

each of the ten classes.  Average safety is normalized to unity and standard errors appear in 

parentheses.  For easier comparison, I also display 95% confidence intervals graphically in 

Figure 1.  I find that minivan drivers are the safest among all classes, with accident risks 

that are approximately 1/3 of the average.  This is due both to driving behavior and the 

locations and times of day that minivan owners tend to be on the road.  Small SUV drivers 

also have very low risk for fatal accidents, about half of the average.  Small SUV’s tend to 

be driven in urban areas (which are much safer than rural areas in terms of fatal accidents) 

and are among the more expensive vehicles.  Pickup trucks are driven significantly more 

dangerously than SUV’s of similar sizes, also intuitive given their younger drivers and 

prevalence in rural areas.  Among passenger cars, large sedans are driven somewhat more 

dangerously than other car types.  Again the urban-rural divide may explain some of this 

(there are more compacts in cities) as well as the higher average age of large sedan drivers. 

The next ten rows of Table 4 are my estimates of the underlying safety across all 

vehicle interactions.  The fatality rates shown are per billion miles traveled and represent a 

situation where driving behavior is fixed at the average in both vehicles.  The miles-driven 

weighted sum of the β parameters is scaled to match the predicted number of fatalities 

overall, allowing comparison with the restricted model in Table 3.  The change when 

moving from the restricted to full model is determined by the interaction of the α terms in 

the row and column: if both classes have unusually high α parameters, for example, the β 
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coefficient in the full model will be much smaller.  I also plot the estimates of  in Tables 

3 and 4 against one other to demonstrate the overall pattern of changes: this appears in 

Figure 2 with the changes in pickups and minivans highlighted.25 

A number of key differences in βij  appear relative to the summary of accident rates 

shown in Table 3: without including differences in driving behavior large pickup trucks 

appear much more dangerous to other drivers than large SUV’s (compare columns 7 and 9 

of Table 3).  After correcting for driving safety, the two classes of vehicles now appear 

similar (columns 7 and 9 of Table 4).  This is an intuitive result in terms of physical 

attributes: large SUV’s and large pickups have similar weight and size, often being built on 

an identical light truck platform.  Minivans now also look like the light trucks that they are 

based on (in fact becoming statistically indistinguishable from them in most accident 

combinations).  This validates engineering predictions based on weight and size, resolving 

the puzzle of why they appear in so few fatal accidents. 

 
 

 and the effects of vehicle weight 
 

While this paper focuses on the policy implications of driver behavior combined 

with engineering safety, an examination of the engineering coefficients in isolation can 

also be useful as a check relative to the existing literature: much of the related work in 

engineering and economics has focused on carefully measuring the physical effect of 

vehicle weight on accident fatalities, controlling away driver behavior.  In my model these 

effects should appear within the β matrix, though will be only a rough measure due to 

aggregation. 

Changes in βij across the columns in Table 4 can be interpreted to reflect the 

external effect of a class; that is, the average number of fatalities that each class imposes 

on the other vehicle involved in an accident after driver behavior has been removed.  

Similarly, changes across the rows of Table 4 may be interpreted as the internal effect of 

                                                
25Regressing the β parameters from the full model on those from the restricted model yields an R-
squared of 0.47, suggesting the degree of variation missed by the restricted model. 

βij

βij
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that class on safety.  To reduce these effects to the dimension of average weight in each 

class I fit the following simple equation by least squares: 
 
 ln βij( ) = a + b ⋅weighti + c ⋅weight j  (5.6) 
 

where weighti measured in thousands of pounds for the class with the fatality (so -b is the 

protective effect) and weightj is the average weight of the class without the fatality (making 

c the increase in risk to others).  The estimate of c is 0.46 (standard error 0.065), 

suggesting that 1000 pounds of weight increases the number of fatalities in other vehicles 

by about 46%.  The average protective effect given in b suggests each 1000 pounds of 

vehicle weight reduces own risk by 54% (standard error 6.5%).  For context, the average 

weight in my sample is about 3500 pounds with a standard deviation of 800.  Among my 

ten classes, large pickups are on average 2000 pounds heavier than compacts. 

 Evans (2001) estimates both the external and internal effects of vehicle weight 

using differences in the number of occupants in the striking and struck car.  This strategy 

helps avoid a host of selection issues, since it allows weight to vary holding all other 

attributes of the vehicle fixed.  He finds that 1000 pounds increases external risk by 42% 

and decreases own risk by 40%.26  Kahane (2003) focuses on own safety risk: for 

passenger cars the central estimate of the protective effect is 44% per 1000 pounds of 

weight.27  Kahane’s estimates for light trucks, in contrast, are not robust and vary between 

-30% and +70% depending on accident type and vehicle size.  Kahane speculates in his 

report that the difficulty in getting consistent estimates for light trucks may be due to 

selection by driver type.  I now have evidence to support this: the selection effects I find 

among different types of light trucks are much stronger than those among passenger cars. 

Anderson and Auffhammer (2011) isolate the effect of weight by conditioning on 

the occurrence of an accident (either fatal or not) and controlling for observable 

                                                
26 In particular, they estimate that each adult occupant adds 190 pounds on average and that striking 
vehicles with an extra adult occupant increase the fatality risk in the other car by 8.1%.   
27 The report includes a very large number of estimation strategies; the central statistic I quote for 
cars is taken from the conclusion to Chapter 3 and the results for trucks from Chapter 4. 
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characteristics.28  They find that 1000 pounds of weight increases external risk by 47%.  

The rough estimate of the weight externality contained in my  parameters is very 

similar, suggesting that at least along the dimension of vehicle weight the structure I 

impose in equations (3.4) and (3.5) has not restricted the underlying pattern in the data. 

Anderson and Auffhammer use their findings to investigate the ability of gasoline 

taxes and weight-based mileage taxes to correct the weight externality in the fleet.  In 

contrast, my approach allows me to consider accident risk in counterfactual fleets where 

the composition of vehicles and distribution of drivers across those vehicles have changed.  

This is ideal for analysis of the U.S. CAFE standard and will be the focus of the policy 

simulations below.  The two papers also take quite distinct approaches on empirical 

identification: here it comes from the relation between single- and multi- vehicle accidents, 

permitting considerable flexibility in the correlation between unobserved driver 

characteristics and class. 
   
 
6.  Policy Simulations 
 

An economic analysis of safety, fuel economy, and fleet composition turns on three 

factors:  The underlying engineering causes of fatal accidents, the driving risk of the 

individuals who choose different vehicle types, and the re-optimization of vehicle choices 

that occurs due to the regulation.  I recover the first two of these as empirical estimates in 

my framework above.  The third, modeling which individuals change their car choice as a 

result of the standard, is included as the first stage of the simulation here. 

Simulating vehicle choice begins with a measure of the shadow costs that various 

types of fuel economy policy will impose: implicitly, existing CAFE policy increases the 

purchases of small cars and decreases the purchases of large cars in order to meet an 

                                                
28 Anderson and Auffhammer argue that conditioning on accident occurrence controls for most of 
driver selection such that the remaining fatality risk can be attributed to the vehicle.  Notice that 
this can remain consistent with the large differences I find in αi: since I condition on miles driven αi 
will include a tendency to get in more accidents per mile (Anderson and Auffhammer suggest this 
is the dominant component) and also allow a tendency toward increased severity once an accident 
has occurred. 

βij
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average target.  Policy also creates an incentive for technological change that I am 

assuming does not alter safety in itself; I instead focus on the changes in fleet composition.  

All of my empirical measures are per-mile driven, and that continues to hold in simulation.  

The vehicle choice model assumes constant own and cross- price elasticities of demand 

taken from the literature, and that consumers re-optimize based on the shadow costs 

present under different types of fuel economy standard.   

The behavior of drivers, a key focus of this paper, also enters the simulation.  I first 

assume that drivers carry their residual term with them as they switch vehicles.  For 

example if a minivan driver switches to a large sedan, that will lower (all else equal) the 

fatality rate per mile in sedans.  On the other hand, if a pickup truck driver switches to the 

same sedan that would increase the fatality rate per mile in sedans.  Simulating a 

movement of the residual with the driver assumes that exogenous characteristics of drivers 

make up most of the safety residual (safety of nearby roads, geography, age, income, 

alcohol use, children in the vehicle, etc.).  

However, Peltzman (1975) points out that larger, safer vehicles should induce more 

risk-taking behavior.  Gayer (2004) also makes the case that light trucks and SUV’s are 

more difficult to drive, working in the same direction as the Peltzman effect.29  In my 

context the Peltzman effect means that a portion of the safety residual should stay with the 

vehicle class even as drivers re-optimize.  I compute an upper bound on these effects 

below: intuitively, Peltzman-type effects make all fuel economy standards look better on 

safety since we are now arguing that movement to smaller vehicles causes an improvement 

in driving behavior on average.  Importantly my main policy conclusions, including the 

adverse effect of the current standard and the improvement offered by a unified standard, 

will remain fully robust to this alternative model. 

Finally, the farther out of sample I wish to look in simulation (i.e. very extreme 

changes to the fleet) the more strain is placed on the empirical estimates.  Fortunately, 

there is a substantial amount of variation in the fleet already included in the data:  For 

                                                
29 The recent widespread adoption of unibody SUV designs and electronic traction and stability 
control may reduce this effect. 
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example the fraction of the fleet that are large pickup trucks varies by more than factor of 

two across bins s.30  The changes as the result of fuel economy rules span only a small 

piece of this variation. 
 
 

Simulation Model 
 

I begin with a set of estimates for own and cross-price elasticities of demand 

among the 10 vehicle classes.  The central-case elasticities I use are shown in Table 5 and 

come from Bento et al (2009); alternatives will be explored in Section 7 and Appendix D.  

I will analyze an improvement in fuel economy of 1.0 miles-per-gallon (MPG) overall.  

My model of fleet composition and safety needs to include just the portion of the 

improvement we expect to come via composition: to remain conservative, I will assume 

that only 0.1 MPG comes through composition and allow the remaining 0.9 MPG to come 

via other changes, for example improved engine technologies.  Alternative assumptions on 

this division can be easily accommodated by scaling the results in the tables below.31 

The matrix of elasticities, combined with the shadow tax implicit in fuel economy 

regulation, uniquely determine the pattern of vehicle choices that will create this 0.1 MPG 

improvement in the fleet.32  I assume that the gain in MPG is realized throughout the new 

and used fleets, meaning the results below should be taken as long run.  Table 6 displays 

the shadow taxes under each of the three policies I consider. 

 
1)  Extension of the current CAFE rule 

The shadow tax in this case is proportional to fuel economy within the light truck 

fleet and within the car fleet.  This means that large pickups receive a shadow tax while 

small pickups receive a shadow subsidy.  Similarly large cars receive a shadow tax while 

compacts receive a shadow subsidy.  There is no incentive to switch from trucks and 

                                                
30 It ranges from 10% (high-income, urban, daytime) to 22% (low-income, rural, night). 
31 If we define C as the desired alternative role of fleet composition the scaling factor to apply in 
the tables is 10 ⋅C .  If half of the gain is expected via composition, for example, the safety impacts 
per MPG would be 5 times larger. 
32 Average fuel economy regulation places a shadow tax on vehicles that fall below the average 
requirement and a shadow subsidy on vehicles that are more efficient than the requirement.  
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SUV’s into cars with this policy, since they are regulated by separate average 

requirements. 

 
2)  Single standard 

Here the shadow tax is very simple:  The least efficient vehicles receive the highest 

tax and the most efficient ones the highest subsidy.  All are in proportion to fuel economy.  

In general trucks receive a shadow tax (the worse their fuel economy the more so) and cars 

receive a shadow subsidy. 
 

3)  Footprint-based CAFE standard 

This more complicated policy targets fuel economy for vehicles based on their 

wheelbase and width.  Large footprint vehicles are given a more lenient target, leaving 

little or no incentive for manufacturers to change the composition of vehicle types they 

produce.  The only residual effect on fleet composition will be for classes that are either 

particularly efficient relative to their footprint (non-luxury cars) or particularly inefficient 

relative to their footprint (SUV’s).  This implies relatively little switching across vehicle 

types and therefore only small changes in safety.  The aggregation up to class level in my 

model presents a caveat that is important here: if the correlation between weight and fuel 

economy is low for vehicles within the same class, then the footprint standard may cause 

more finely detailed compositional changes that I cannot observe. 

 

The main simulation uses the elasticities, shadow costs, and estimates from the 

safety model above to calculate the final composition of the fleet under each policy 

alternative and also track types of drivers as they switch across vehicles. Depending on 

which types of drivers are switching into the smaller vehicles their accident rates per mile 

can either rise or fall.  For example:  If the policy causes a lot of large-pickup drivers to 

now buy small SUV’s instead, I would predict that the average driving safety behavior in 

small SUV’s worsens.  The small SUV class will now contain the relatively safe, urban 
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drivers it originally included, and now also add some drivers from the more dangerous 

category that formerly owned large pickups.  

More formally, I compute the updated driver behavior, α̂ i , by taking a quantity-

weighted average of the safety characteristics of drivers from all the classes who have 

switched into class i as a result of policy. This is combined with those who choose class i 

both before and after the regulation.  The predicted number of fatalities under the new 

policy scenarios is given by: 
 
Ẑijs = n̂isn̂ jsα̂ iα̂ jβij  (6.1) 

Ŷis = n̂isα̂ iλsxi  (6.2) 
 

where α̂ i  is the new driver safety residual and n̂i  reflects the new fleet composition 

induced by the policy.  In constructing the counterfactual it is also important to note that 

α i  is an average of underlying α is  parameters that can vary by bin.  I implicitly assume 

here that the cross-price elasticities in Table 5 apply in all bins, so that the average 

switcher from each class is still accurately described by the average α i . 
 
 
Simplifying assumptions 
 

In order to keep the analysis tractable I abstract from issues of scale and accidents 

outside the passenger fleet as follows: 
 

i) Commercial vehicles:  I assume that the fleet of commercial vehicles (mainly 

heavy trucks for which a commercial driver’s license is required) remains fixed since they 

are not covered by CAFE regulation.  Fatalities occurring in passenger vehicles colliding 

with these commercial vehicles make up about 8.4% of fatalities (NHTSA, 2009) and I 

scale these using the same risk factors I estimate for single-car accidents.33  If the relation 

between class and fatality risk is less strong for accidents with commercial vehicles, in the 

extreme keeping fatalities constant for those accidents, the magnitude of the changes I 

                                                
33 This approximation relies on the much larger mass of commercial trucks meaning collisions with 
them resemble collisions with fixed objects. 
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estimate below would be reduced.  The difference this assumption makes is small, 

however, when compared with the estimates overall.34 
 

ii) The scale of the fleet and miles driven:  It may be that fuel economy rules will 

change the total number of cars sold (likely decreasing it) or the number of miles driven 

(likely increasing that in a “rebound” effect).35  I focus here on fatalities per mile driven in 

order to keep the simulation transparent: to the extent that either the increase in overall 

miles or decrease in fleet size is important it will scale total fatalities either up or down.  

The comparison in policy provisions that I focus on is unaffected by changes in overall 

scale.36   
 

iii) Pedestrians and bicyclists:  About 14% of fatalities involving passenger 

vehicles are pedestrians and bicyclists.  These fatality rates are nearly identical among cars 

and light trucks, consistent with the observation that the mass of the passenger vehicle is 

many times larger regardless of its class.37  I therefore assume a constant rate of fatal 

accidents involving pedestrians.  To the extent that smaller vehicles can reduce pedestrian 

fatalities – for example because of better visibility when reversing – it will serve to 

accentuate the benefits of the uniform policy that I identify below. 

 
Results of policy simulations 
 

The results of the three main policy simulations are contained in Tables 7 through 

9.  The standard errors reflect the estimates of the safety parameters made in this paper; the 
                                                
34 The largest policy effect I simulate is roughly 0.5% of the base fatality rate; interacted with the 
8.4% of accidents involving commercial vehicles this only reduces the results below by about 6%. 
The adjustment is smaller for the other cases. 
35 A decrease in quantity might come from cost increases as fuel-saving technologies are 
introduced.  An increase in miles is known as the rebound-effect; better fuel economy results in 
cheaper miles at the margin. 
36 Differential changes in driving across vehicle types will have more complicated effects and an 
extension to the paper could involve a richer simulation model to account for this.  These effects 
would not change the estimation strategy or empirical results.  
37 Pedestrian and cyclist fatalities in my data are 2.82 per billion miles for cars and 2.81 per billion 
miles for light trucks.  Within trucks, fatality rates are somewhat higher for larger vehicles.  
Surprisingly, the opposite effect holds within cars: larger vehicles have lower pedestrian fatality 
rates. 
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hypothetical changes in fleet composition are treated as deterministic.  Appendix D and the 

sensitivity analysis explore the effect of error in the elasticities and an alternative source 

for the elasticities data. 
 
 

1)  Increment of 1.0 MPG to the current CAFE rules: 
 

The left panel of Table 7 displays the change in total traffic deaths that are 

predicted using the restricted model, where driving behavior is not estimated.  The 

restricted model suggests that CAFE offers an improvement in safety: 135 lives would be 

saved.   

A very different picture emerges when I use the full model, including the selection 

on driving behavior at the class level.  The central estimate is that the increment to CAFE 

will result in 149 additional traffic-related fatalities per year.  The final row applies the 

value of statistical life figure used in EPA benefit-cost analyses to convert this change in 

risk to dollar cost, exceeding one billion annually.  If about 3.1 billion gallons of gasoline 

are saved this translates to 33 cents per gallon.  Placing this in context, an external cost of 

25 dollars per ton CO2 amounts to 22 cents per gallon of gasoline.  Parry and Small (2005) 

include damages from local air pollution emissions of about 16 cents per gallon. 

It is straightforward to see the intuition behind the reversal in sign: large SUV’s 

and pickups (and large sedans) cause and experience a lot of fatal accidents in the data.  

The naive restricted model assumes that when you take away these large (and seemingly 

dangerous) vehicles an improvement in safety results.  Unfortunately I must argue that the 

picture is not so favorable: much of the danger in the larger vehicle classes appears to be 

due to their drivers, not the cars themselves.  When we move those people into smaller 

vehicles it does not diminish the risk, and in some cases can even magnify it since smaller 

vehicles do more poorly in most single-car accidents. 

It is important to point out that the driver effects here are not all habits that we 

would fault the drivers themselves for (like running through traffic signals).  A significant 

portion is simply geography and the urban-rural divide: drivers who currently choose large 

vehicles tend to live in rural areas, where accident fatality rates are already very high.  As 
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rural drivers change to smaller vehicles the dangers of accidents on rural highways remain.  

These are very often single-car accidents, as reflected in the composition of additional 

fatalities I predict.  Finally, an important limitation in these results comes from the 

aggregation I make across classes: substitution within a class to different engine sizes or 

technologies may not have a large impact on safety, but there is also considerable variation 

in characteristics like weight and volume within a class that do influence safety.  More 

detail on class definitions and aggregation appears in Appendix E. 
 
 
2)  Unified standard achieving a 1.0 MPG improvement 
 

Table 8 presents results under a unified standard, which has a strikingly different 

effect from an increment to current CAFE rules.  My full model shows an increase of only 

8 fatalities per year under a unified standard.  A zero change lies within the confidence 

bounds.  This represents a highly statistically significant improvement over current CAFE 

rules and comes as the result of two effects canceling each other out in the fleet: 

The first effect reiterates the undesirable outcome I find in the first experiment, that 

is, changes within the car fleet and within the truck fleet lead to smaller and lighter 

vehicles and increase the number of fatalities. 

Recall though that the unified standard adds a second incentive:  It encourages 

switching away from light trucks and SUV’s and into cars.  This second effect improves 

overall safety substantially.  There are aspects of light trucks (for example the height of 

their center of mass) that make them more dangerous vehicles than cars, even after 

controlling for their drivers.  My model is able to measure the importance of the difference 

between light trucks and cars, and then compare it with the deterioration of safety within 

the car and truck fleets also resulting from the CAFE standard. 
 
 
3)  Footprint-based standard 
 

Table 9 presents results under the footprint-based standard that is currently coming 

into effect.  The standard discourages most types of composition changes by design, with 

the regulatory brief stating: "With the footprint-based standard approach, EPA and 
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NHTSA believe there should be no significant effect on the relative distribution of 

different vehicle sizes in the fleet." (NHTSA 2010)   

The most significant compositional changes likely to remain are a modest 

movement away from SUV’s and into pickup trucks and cars; this is due to the relatively 

small footprint of SUV’s relative to their fuel consumption.38  My full model shows a very 

small deterioration in safety from the footprint standard, with an increase of only 6 

fatalities per year. 

It is important to point out that these small safety effects come paired with large 

efficiency costs:  Fuel savings under the footprint standard must be accomplished almost 

exclusively through engine technology.  Movement to a smaller and lighter fleet is likely to 

be a much cheaper way to save gasoline and that channel is shut down by the new rules. 

My results on the unified standard are encouraging in this regard:  I show that 

savings in gasoline from movement to a smaller fleet can come with the same minimal 

effect on safety that appears under the footprint standard.  As the U.S. presses toward even 

more fuel efficiency in coming years, changes in fleet composition will prove valuable 

(even necessary) and I show here that these changes can be made without severe safety 

consequences. 
 
Comparison with a Gasoline Tax  
 

 While increases in the U.S. gasoline tax are typically met with strong political 

opposition, they do provide an efficient benchmark for reduction of gasoline use.  CAFE 

rules typically compare very unfavorably to a gasoline tax and consideration of safety 

outcomes tends to further that conclusion: 

 Consider a gasoline tax that achieves half of its gasoline savings through fleet 

composition and half through a reduction in miles driven.39  The portion saved via fleet 
                                                
38 The steepness of the slope set for the footprint standard determines the extent to which it shuts 
down switching.  A slope too low to shut down switching altogether will still involve some change 
into smaller vehicles, though always less than under the unified rule as long as the slope is greater 
than zero. 
39 The literature differs on this fraction.  Jacobsen (2010), for example, suggests a much greater 
portion may come from miles driven.  Here the fraction will simply scale the results up or down: 
the larger the fraction from miles driven, the larger the safety gains from a gasoline tax. 
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composition will look just like the unified standard above: the shadow tax proportional to 

fuel economy is now an actual tax proportional to fuel economy.  Following the results in 

Table 8, this type of movement in fleet composition is predicted to produce only small 

changes in fatalities.  The remaining reduction in gasoline use from the tax would come 

from miles driven; the 1.0 MPG improvement considered above reduces gasoline use by 

about 3.8%, so half of that is a 1.9% reduction in miles driven from the equivalent gasoline 

tax.  All else equal, this reduction in miles will create a reduction of about 500 fatalities per 

year, representing a dramatic improvement relative to any version of CAFE considered 

above.40 
 
 
7.  Alternative Models 
 
 
Driver-vehicle interactions correlated with size 
 

 Peltzman (1975) argues that safer vehicles (in particular those with seatbelts 

installed) will be driven more aggressively as a result of the driver’s tradeoff in utility.41  

Gayer (2004) presents evidence of a similar effect, where drivers in light trucks appear to 

take more risks or have less control when driving.   

 I am able to investigate this in the context of my model by further decomposing αi 

into two pieces.  The first portion is the part of αi predicted by the own-safety of the 

vehicle.42  In that sense it is an upper limit on the size of the Peltzman effect.43  The second 

portion is whatever idiosyncratic variation remains in αi and I will assume that continues to 

move with the driver.  Table 10 presents the results of these policy experiments.  The third 

column is my upper bound on the Peltzman effect over all driving safety residuals.  The 

                                                
40 A portion of these gains is expected to be external; see Footnote 10. 
41 Subsequent empirical research has shown this effect may be small, see Cohen and Einav (2003). 
42 Using least squares regression of αi on own-safety, calculated as the average of βij in a row. 
43 Unobserved countervailing selection in initial vehicle choice could potentially make the 
Peltzman effect even larger; these more extreme cases could still be modeled in simulation, 
possibly using estimates from other studies. 
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fourth column controls first for census region (there are more light trucks and dangerous 

roads in the west) and then applies the same method to divide the residual into two pieces. 

 As expected, the outcomes in Table 10 show that all fuel economy standards are 

improved if smaller vehicles indeed cause safer driving.  However, even at the limit 

defined above I show that the existing fuel economy standard continues to have adverse 

effects on safety.  Controlling for census region seems reasonable (as driver residence is 

unlikely to change with fuel economy standards), and the result becomes even closer to my 

central case.  Adding further support to the importance of location, data on accident fault in 

Appendix C suggests that much of αi is coming from factors like location or time of day 

rather than from behaviors associated with fault. 

 Finally, the improvement that can be offered by unifying the standard appears fully 

robust to the case where I allow a Peltzman-type effect.  This is shown in the final row of 

the table.  Because the difference in policies is maintained and overall safety is improved, 

we see that the unified standard even begins to offer substantial improvements in overall 

safety in the final column of the table. 
 
 
Estimating driver behavior without using crash test data 
  

It is possible to identify my empirical model (including the measurement of driver 

behavior by class) without the use of crash test data, relying instead on the physical 

properties of accidents.  Accidents between two vehicles of similar mass and speed closely 

resemble accidents with fixed objects since both crashes result in rapid deceleration to a 

stationary position.44  When vehicles of different mass collide, the heavier vehicle will 

decelerate more slowly (pushing the smaller vehicle back) which creates asymmetry in the 

degree of injuries. 

 My alternative identification strategy makes use of this property, setting risk in 

single car accidents proportional to the risk in accidents between cars of the same class,  

βii .  The model described in Section 5 becomes: 

                                                
44 See Greene (2009).  Each vehicle’s change in velocity raised to the 4th power closely predicts 
injury severity.   
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E(Yis ) = nisα isλsβii  (7.1)  
E(Zijs ) = nisnjsα isα jsβij  (7.2) 

 

The restriction on the diagonal elements of β  is sufficient for identification. 

 The first two columns of Table 11 provide a summary of results from my preferred 

specification in Section 5.  The third column shows the results from estimating (7.1) and 

(7.2) above; the standard errors are much larger in this specification, reflecting the 

reduction in data available to the model.  The results on existing CAFE and the unified 

standard confirm those in the main specification: the unified standard continues to offer a 

statistically significant improvement.  The final row, for the footprint standard, now 

displays an improvement in safety in contrast to the near zero result in the central case.  

This effect stems from relatively high fatality rates in SUV-SUV collisions, which in this 

specification translate to larger estimates of their engineering risk and a gain when these 

classes are discouraged by the footprint standard.45 
 
 
Alternative demand elasticities  
 

 The general pattern in the simulation, that fewer large vehicles and more small ones 

will be sold, is fundamental to a reduction in fuel economy.  However, my simulation also 

embeds more subtle changes in substitution across classes.  For example: Is a driver giving 

up a large SUV more likely to buy a small SUV or switch to a small pickup truck? 

 I first investigate the robustness of my simulation results by introducing a separate 

set of substitution elasticities, shown in Table 12.  These are reported in Kleit (2004) and 

are also employed by Austin and Dinan in their 2007 study.  The elasticities derive mainly 

from survey data on second-choices of new car owners, providing a very different view 

than the cross-sectional variation used to generate the elasticities in my main simulation. 

                                                
45 The fatality rate in matched SUV collisions is large relative to that expected given SUV crash 
tests into fixed objects, perhaps due to increased rollover risk in this type of collision.  The 
resulting beta coefficients on SUV's are 13% larger here. 
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 The fourth column of Table 11 summarizes the results under the alternative 

elasticities.  My main findings remain intact, though the effectiveness of a single fuel 

economy standard at mitigating safety consequences is somewhat muted relative to my 

preferred model.  For further analysis along these lines, Appendix D also returns to the 

Bento et al (2009) source for the elasticities and takes 50 different draws from the posterior 

density.  The model in that paper is estimated relatively precisely, such that the results here 

remain robust to even the extreme draws. 

 
Additional robustness checks 
 

 I also investigate the robustness of my findings in a number of subsamples of the 

data.  Columns 3 through 5 of Table 13 summarize my main results in various subsamples, 

with total fatalities scaled by the number of observations used so that the columns are 

comparable. 
 
1998 and newer model years 
 

 1998 was the first model year where both passenger and driver airbags were 

required in all new vehicles.  Airbags dramatically alter safety risks, and if their presence 

also influences driving behavior or changes relative risks across classes we might expect a 

different set of results to emerge.  My estimates, however, appear robust in this dimension. 
 

Drivers under 55 
 

 There is evidence that elderly drivers may more often be the subjects of fatal traffic 

accidents due to their relative frailty.46  This introduces a potential asymmetry in my 

model: Older drivers may place themselves at greater risk but don’t necessarily impose this 

risk on those around them.  I restrict my sample to driver fatalities among those less than 

55 years old and find similar results in the aggregate outcomes for fuel economy rules. 

 
 

 
 
                                                
46 Loughran and Seabury (2007) investigate this issue in detail. 
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Clear weather 

 My simulations assume that the locational or behavioral factors influencing driver 

safety remain with the driver after the change in composition.  A potentially important 

caveat has to do with weather.  If a driver switches away from an SUV, for example, they 

may be less likely to drive in the rain or snow.  I therefore experiment with a sample 

limited to fatalities that occur in clear weather (any weather condition, even fog or mist, is 

excluded).  Notably, this only removes 10% of observations; 90% of fatal accidents occur 

in clear conditions.  My results are again unchanged, suggesting that even if there is 

substantial behavioral response to weather conditions it would not be relevant to most 

accident fatalities.  
 
 
8.  Conclusions 
 

 I introduce a new empirical model of vehicle accidents that provides estimates of 

both the behavior of drivers and the underlying risk associated with engineering 

characteristics in a single framework.  To my knowledge this is the first study to capture 

unobserved driver behavior and the impact of unobserved physical vehicle characteristics 

both within and across vehicle categories.  The framework has application to fuel economy 

policy (the simulations performed here) and also to a much broader set of policy initiatives.  

I show that in the case of fuel economy, correctly accounting for driver behavior 

significantly alters conclusions about fleet composition and safety. 

 Two main effects appear in the empirical estimates.  First, there is considerable 

diversity in driving behavior across vehicle classes: the most dangerous drivers (pickup 

truck owners) are nearly four times as likely to be involved in fatal accidents as the safest 

drivers (minivan owners) after controlling for the physical safety attributes of their 

vehicles.  Second, controlling for driver safety produces estimates of the physical safety of 

interactions between vehicles that closely mirrors theoretical engineering results.  Large 

and heavy vehicles are the safest to be inside during an accident but also cause the most 

damage to others.  When reduced to the single dimension of vehicle weight, my estimates 

of the own and external effects of heavier vehicles match those in the literature closely. 
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 I use these results to address the motivating question relating safety and fuel 

economy regulation.  I find that the provision in existing CAFE regulation to separate light 

trucks and SUVs from passenger cars is harmful to safety: incrementing the standards by 

1.0 mile per gallon causes an additional 149 fatalities per year in expectation.  The increase 

in statistical risk would be valued at 33 cents per gallon of gasoline saved, with any 

additional injuries or property damage (assuming they are correlated with fatalities) further 

increasing the cost of this type of regulation.47  Intuitively, my estimates measure the 

degree to which greater diversity in the vehicle fleet leads to more fatal accidents.  Current 

CAFE standards, by encouraging light trucks while at the same time making passenger 

cars smaller and lighter, increase the diversity of the fleet. 

 In contrast, I find that a unified fuel economy standard has almost no harmful effect 

on safety.  Two effects are operating in opposing directions: weight reductions increase 

risk while substitution away from light trucks makes the fleet more homogeneous.  In 

contrast to the literature, my model can compare the relative importance of these two 

effects and I find they offset almost exactly under the shadow costs implied by a uniform 

fuel economy standard.  

 Extensions of the model here could address some of the remaining limitations and 

potentially uncover additional effects of interest: a more detailed disaggregation of car 

classes, for example by manufacturer, fuel economy, or footprint, could identify changes 

within the current class definitions and lead to additional insight on fuel economy rules.  

More detailed forecasts for the evolution of the fleet over time could reveal important short 

run impacts on safety, and a longer time series with finer detail on miles driven could 

similarly enhance the identification.  Combining this with improved resolution on the 

location of miles driven by class might also allow further relaxation of the restrictions I 

impose here across equations, influencing the part of risk that enters both single- and 

multi-vehicle accidents.  

                                                
47 The gasoline savings here reflect only fleet composition changes, holding miles driven fixed.  To 
the extent that a “rebound effect” increases miles driven, the safety cost per gallon saved would be 
even larger. 
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Table 1:  Summary Statistics by Class 
 
 

 
 

1 Two-vehicle accidents, annual average 2006-2008. 
2 In billions of miles per year (2008 National Household Transportation Survey). 
3 Fatal single car accidents per billion miles traveled, annual average 2006-2008. 
4 Results from NHTSA testing 1992-2008.  The head-injury criterion (HIC) score has been 

shown to be closely and linearly related to fatality rates (when controlling for driver 
behavior, a doubling in the score should correspond to a doubling of fatality rates).  

 
 
 
 

Count of Accident Fatalities1

Class Own Vehicle Other Vehicle

Compact 2812 1068 247.7 14.3 528.7
Midsize 2155 1280 249.7 11.3 491.4
Fullsize 733 507 83.2 10.2 353.9
Small Luxury 317 236 54.5 13.5 424.3
Large Luxury 364 307 50.8 11.9 469.3

Small SUV 719 1129 216.0 9.4 626.3
Large SUV 477 1379 148.9 12.8 531.2
Small Pickup 594 624 87.1 15.9 666.2
Large Pickup 716 2293 159.5 18.2 585.9
Minivan 469 532 126.7 4.9 577.9

Total Miles 
Driven2

Crash Test 
HIC4

Single Vehicle 
Fatality Rate3
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Table 2:  Summary Statistics by Bin s 
 

 

 
 

1 Based on zip-code level classifications from the U.S. Census.  
2 Relative frequencies are calculated as accident counts within group divided by total miles traveled.  A combination of vehicle popularity 

and driver behavior within group determines the accident with greatest relative frequency.

 Fatalities (1 and 2 Car Accidents) Greatest Relative Frequency2

Density1 Income1 Time of Day 2006 2007 2008
1-Car 

Accidents 2-Car Accidents

Night 705 673 582 3.92 0.882 0.557 Lg Pickup Fullsize/Fullsize
Evening 374 373 320 2.77 0.718 0.485 Lg Pickup Fullsize/Fullsize

Day 1574 1475 1310 6.66 0.643 0.519 Lg Pickup Sm Pickup/Lg Pickup
Night 501 518 414 3.47 0.883 0.537 Lg Pickup Compact/Lg Lux

Evening 254 257 210 2.16 0.756 0.535 Sm Pickup Fullsize/Fullsize
Day 1022 1003 897 4.97 0.585 0.498 Sm Pickup Sm Pickup/Lg Pickup

Night 341 308 266 2.71 0.897 0.460 Lg Pickup Sm Lux/Sm Pickup
Evening 150 133 144 1.65 0.728 0.478 Sm Pickup Lg Lux/Lg Lux

Day 639 645 540 4.02 0.550 0.459 Lg Pickup Compact/Lg Pickup
Night 587 570 532 3.53 0.827 0.528 Lg Pickup Compact/Lg Pickup

Evening 283 265 222 2.37 0.655 0.491 Lg Pickup Sm Lux/Sm Lux
Day 1133 1062 953 4.91 0.609 0.528 Lg Pickup Sm Pickup/Lg Pickup

Night 1038 995 946 4.83 0.822 0.491 Lg Pickup Lg Lux/Lg Lux
Evening 478 437 368 2.95 0.652 0.471 Lg Pickup Lg Lux/Lg Pickup

Day 1850 1671 1569 6.72 0.571 0.473 Lg Pickup Compact/Lg Pickup
Night 4234 4085 3565 11.96 0.766 0.380 Sm Lux Compact/Sm Lux

Evening 1490 1404 1229 5.96 0.599 0.385 Sm Lux Compact/Lg Pickup
Day 5786 5525 4801 14.16 0.511 0.386 Compact Compact/Lg Pickup

All 22439 21399 18868 41.85 0.650 0.441 Lg Pickup Compact/Lg Pickup

Variance 
(Weekly)

Fraction         
1-Car

Fraction     
Light Trucks

Rural

Urban

Low

Medium

High

Low

Medium

High
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Table 3:  Estimates of  
βij  in Restricted Model (No class-level driver safety effects)1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 Estimates are from the multi-car accident equation alone, with all class-level safety effects 

restricted to unity.  The parameters and standard errors (shown in parentheses) are computed by 
maximum likelihood estimation of the negative binomial version of the model.  Without single-car 
accidents or variation over bins there are 15,600 observations and the log likelihood is -19637.  
These coefficients provide a summary of fatal accident rates without controlling for driver 
behavior. 
 
 

Vehicle j:

Compact Midsize Fullsize
Small 

Luxury
Large 

Luxury
Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

Vehicle i:

Compact 12.4        
(0.5)

14.9        
(0.5)

17.7        
(1.0)

12.6        
(1.0)

17.2        
(1.2)

16.2        
(0.6)

26.4        
(0.9)

20.2        
(1.0)

38.1        
(1.1)

12.1        
(0.6)

Midsize 8.8        
(0.4)

11.8        
(0.5)

12.9        
(0.8)

9.2        
(0.8)

12.8        
(1.0)

11.2        
(0.5)

20.4        
(0.8)

16.5        
(0.9)

30.5        
(1.0)

8.9        
(0.5)

Fullsize 8.7        
(0.7)

11.9        
(0.8)

16.0        
(1.5)

8.8        
(1.4)

14.9        
(1.9)

11.6        
(0.8)

19.0        
(1.3)

17.4        
(1.6)

30.6        
(1.6)

9.8        
(1.0)

Small Luxury 8.5        
(0.8)

6.5        
(0.7)

11.2        
(1.6)

11.8        
(2.0)

10.8        
(2.0)

9.6        
(0.9)

12.1        
(1.2)

6.9        
(1.2)

16.6        
(1.4)

5.1        
(0.9)

Large Luxury 6.6        
(0.7)

8.7        
(0.8)

11.6        
(1.7)

6.1        
(1.5)

11.2        
(2.1)

10.3        
(1.0)

20.4        
(1.7)

13.3        
(1.7)

22.9        
(1.7)

8.2        
(1.1)

Small SUV 3.6        
(0.3)

4.2        
(0.3)

4.6        
(0.5)

4.2        
(0.6)

6.8        
(0.8)

4.3        
(0.3)

7.9        
(0.5)

4.9        
(0.5)

12.2        
(0.6)

3.4        
(0.4)

Large SUV 4.2        
(0.3)

4.2        
(0.3)

3.8        
(0.6)

3.7        
(0.7)

5.2        
(0.8)

3.5        
(0.3)

7.9        
(0.6)

5.4        
(0.6)

11.1        
(0.7)

3.7        
(0.4)

Small Pickup 8.2        
(0.6)

8.4        
(0.6)

10.1        
(1.2)

4.6        
(1.0)

6.6        
(1.2)

7.4        
(0.6)

14.0        
(1.1)

13.0        
(1.3)

29.1        
(1.5)

7.7        
(0.8)

Large Pickup 4.8        
(0.4)

5.2        
(0.4)

5.9        
(0.7)

4.5        
(0.7)

6.3        
(0.9)

4.4        
(0.4)

10.1        
(0.7)

7.4        
(0.7)

21.5        
(1.0)

3.6        
(0.4)

Minivan 3.5        
(0.3)

3.8        
(0.3)

6.1        
(0.8)

3.5        
(0.7)

3.9        
(0.8)

5.0        
(0.4)

8.9        
(0.7)

7.7        
(0.8)

14.4        
(0.9)

4.7        
(0.5)
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 Table 4:  Central Estimation Results1 

 

 

 
 
 

1 Estimates of αi reflect driver safety risks by class.  These are identified up to a constant and 
normalized here such that a value of one represents the average driver.  Values larger than one 
reflect increased risk.  βij are estimated rates of fatalities in car i (row) when colliding with car j 
(column) per billion miles traveled by average drivers.  βij are scaled such that their VMT weighted 
sum equals the total predicted number of fatalities, making them comparable to the values in Table 
3.  The parameters and standard errors (shown in parentheses) are computed by maximum 
likelihood estimation of the negative binomial version of the model. 

Compact Midsize Fullsize
Small 

Luxury
Large 

Luxury
Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

αi: Driver 
Safety Behavior

1.14        
(0.06)

0.98        
(0.06)

1.25        
(0.08)

1.19        
(0.08)

1.05        
(0.07)

0.65        
(0.04)

1.06        
(0.06)

1.09        
(0.07)

1.45        
(0.08)

0.39        
(0.02)

βij:  Fatality 
rate in vehicle i

Compact 8.6        
(1.0)

12.1        
(1.4)

11.5        
(1.5)

7.6        
(1.1)

12.4        
(1.7)

19.8        
(2.4)

19.9        
(2.4)

16.3        
(2.0)

24.3        
(2.9)

24.9        
(3.2)

Midsize 7.1        
(0.9)

11.0        
(1.4)

9.7        
(1.3)

6.6        
(1.0)

10.7        
(1.5)

15.9        
(2.0)

17.7        
(2.2)

15.1        
(1.9)

22.2        
(2.7)

21.0        
(2.8)

Fullsize 5.6        
(0.8)

8.9        
(1.2)

9.5        
(1.5)

5.2        
(1.0)

10.1        
(1.8)

13.0        
(1.8)

13.0        
(1.8)

12.5        
(1.8)

17.5        
(2.2)

18.2        
(2.8)

Small Luxury 5.1        
(0.8)

4.6        
(0.7)

6.6        
(1.2)

5.6        
(1.2)

6.7        
(1.5)

10.5        
(1.6)

8.3        
(1.3)

5.3        
(1.1)

10.2        
(1.5)

9.5        
(2.0)

Large Luxury 4.8        
(0.8)

7.3        
(1.1)

7.8        
(1.5)

3.8        
(1.0)

8.3        
(1.9)

13.1        
(2.0)

15.9        
(2.3)

11.2        
(2.0)

15.5        
(2.2)

17.5        
(3.2)

Small SUV 4.4        
(0.6)

6.0        
(0.8)

5.1        
(0.8)

4.7        
(0.9)

8.7        
(1.4)

9.1        
(1.3)

10.2        
(1.4)

6.7        
(1.1)

13.3        
(1.7)

11.8        
(1.9)

Large SUV 3.1        
(0.4)

3.7        
(0.5)

2.6        
(0.5)

2.5        
(0.6)

4.0        
(0.8)

4.6        
(0.7)

6.2        
(0.9)

4.5        
(0.8)

7.3        
(1.0)

7.9        
(1.3)

Small Pickup 6.6        
(0.9)

7.7        
(1.1)

7.2        
(1.2)

3.5        
(0.9)

5.5        
(1.2)

10.1        
(1.5)

11.6        
(1.6)

11.0        
(1.7)

19.4        
(2.5)

17.4        
(2.8)

Large Pickup 3.1        
(0.4)

3.8        
(0.5)

3.4        
(0.5)

2.8        
(0.5)

4.2        
(0.8)

4.8        
(0.7)

6.6        
(0.9)

4.9        
(0.8)

11.1        
(1.4)

6.4        
(1.1)

Minivan 7.3        
(1.1)

8.9        
(1.3)

11.3        
(2.0)

6.5        
(1.6)

8.3        
(1.9)

17.7        
(2.6)

19.0        
(2.7)

17.4        
(2.8)

25.9        
(3.4)

27.1        
(4.7)

Negative binomial regression
Number of obs: 308880
Log likelihood: -89321
Wald chi2(297): 233212
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Table 5:  Matrix of Own and Cross-Price Demand Elasticities by Class1 

 
 
 
 
 
 
 
 
 
 
 
 
 

1 These elasticities are derived from Bento et al (2009) and are used in the central case of the policy 
simulations.  I investigate the robustness of the results to alternative elasticities (see Table 12) and 
variance in the Bento et al estimates (see Appendix D). 

 
 
 
 
 
 

Table 6:  Average Fuel Economies and Shadow Taxes by Class 
 

 

 
 

   1 The shadow taxes and shadow subsidies are placed by the fuel economy policy and differ 
according to the type of standard in place.  They are proportional to the distance of each vehicle 
(in gallons-per-mile) from the applicable fuel economy target.  The units are in thousands of 
dollars per vehicle, though only the resulting changes in composition of the fleet are relevant to 
the safety outcomes modeled here. 

 
  

Shadow Tax of Policy Increment1

Class
Fuel Economy 

(MPG)

Compact 30.2 0.28 0.22 0.06
Midsize 27.0 -0.09 0.12 0.05
Fullsize 25.4 -0.31 0.06 0.06
Small Luxury 26.0 -0.22 0.08 -0.02
Large Luxury 23.8 -0.56 -0.01 0.00

Small SUV 24.1 0.37 0.01 -0.11
Large SUV 19.0 -0.44 -0.28 -0.14
Small Pickup 22.5 0.16 -0.07 0.02
Large Pickup 19.1 -0.41 -0.27 0.01
Minivan 23.4 0.29 -0.02 0.06

Increase 
current CAFE

Unified 
standard

Footprint     
CAFE

Compact Midsize Fullsize
Small 
Luxury

Large 
Luxury

Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

Compact -3.51 0.97 0.42 0.32 0.21 0.67 0.49 0.41 0.51 0.52
Midsize 0.80 -3.01 0.31 0.16 0.15 0.41 0.31 0.32 0.32 0.29
Fullsize 0.79 0.73 -4.94 0.14 0.21 0.31 0.44 0.30 0.45 0.30
Small Luxury 0.59 0.35 0.14 -5.15 0.15 0.46 0.16 0.13 0.24 0.16
Large Luxury 0.42 0.36 0.22 0.16 -4.18 0.24 0.22 0.10 0.21 0.12
Small SUV 0.76 0.54 0.19 0.28 0.14 -2.39 0.25 0.19 0.30 0.29
Large SUV 0.62 0.48 0.31 0.11 0.15 0.27 -2.95 0.19 0.37 0.21
Small Pickup 0.68 0.66 0.26 0.12 0.08 0.29 0.24 -3.96 0.23 0.18
Large Pickup 0.92 0.68 0.44 0.24 0.19 0.48 0.51 0.25 -2.81 0.43
Minivan 0.69 0.47 0.23 0.12 0.08 0.34 0.23 0.15 0.32 -3.31
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Table 7:  Effect of an Increase in Current CAFE Rules on Total Traffic Deaths 
 
 
 

 
 
 

1 This case reflects the restricted model, where driving safety behavior is assumed constant 
across all classes; only the quantity of cars in each class changes.  The change is expressed in 
fatalities per year with a one-MPG increment to fuel economy rules. 

2 Here the full model is used to predict changes in safety, including the parameters that account 
for differences in driving safety behavior across classes. 

3 The variance of the simulation results G is approximated by 
(∂G(γ̂ ) / ∂γ̂ )'Var(γ̂ )(∂G(γ̂ ) / ∂γ̂ )  where Var(γ̂ )  is the variance-covariance matrix from 
estimation of the negative binomial model and γ includes the λ, β and δ parameters. 

4 Annual costs in millions of dollars, calculated as the change in total fatality risk multiplied by 
a value of statistical life of $6.9 million, following EPA benefit-cost analysis. 

 
 
 
 
 

 

No driver effects1 Full model2

One car Two car Total One car Two car Total

Compact 226.3 142.4 368.6 236.1 177.6 413.6
Midsize -60.1 -75.4 -135.5 -51.3 -50.6 -101.9
Fullsize -55.0 -57.0 -112.0 -55.1 -51.0 -106.1
Small Luxury -30.8 -16.1 -46.8 -30.9 -13.4 -44.2
Large Luxury -34.6 -25.6 -60.2 -34.6 -22.3 -57.0

Small SUV 78.4 16.4 94.8 142.4 45.3 187.7
Large SUV -85.9 -27.1 -113.0 -85.8 -23.2 -109.0
Small Pickup 47.8 11.9 59.7 50.9 18.4 69.3
Large Pickup -168.7 -54.6 -223.2 -171.4 -50.8 -222.3
Minivan 22.4 10.2 32.6 69.1 50.2 119.3

Total -60.0 -75.0 -135.0 69.3 80.2 149.5
Standard error3 (6.1) (9.4)
Cost of risk 
change (millions)4 -932 1031
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Table 8:  Effect of a Unified Fuel Economy Standard on Total Traffic Deaths1 

 

 
 

1 The unified standard induces two kinds of changes in the fleet: i) Small vehicles replace large ones 
within the car and light truck divisions.  ii) Light trucks overall (the second set of five classes) 
replace cars overall (the first group).  The change is expressed in fatalities per year for   a one-
MPG increment to fuel economy rules and standard errors are calculated as in Table 7. 

2 In millions of dollars annually. 
 
 

Table 9:  Effect of a Footprint Fuel Economy Standard on Total Traffic Deaths1 
 

 
 

1 A footprint standard (by design) involves much smaller changes in the composition of the 
fleet than either of the first two policies simulated.  The changes in accident fatalities are 
similarly small.  The change is again expressed in fatalities per year for a one-MPG 
improvement and standard errors are as above. 

2 In millions of dollars annually. 

No driver effects Full model

One car Two car Total One car Two car Total

Compact 167.8 105.7 273.5 153.3 97.7 251.0
Midsize 39.4 7.5 47.0 44.7 13.9 58.6
Fullsize 6.7 -1.5 5.2 5.6 -1.6 4.0
Small Luxury 5.7 0.8 6.5 4.9 0.7 5.6
Large Luxury -2.6 -5.6 -8.1 -2.1 -4.8 -6.9

Small SUV -12.5 -11.8 -24.3 -0.3 -6.7 -7.0
Large SUV -62.1 -19.6 -81.7 -62.1 -19.1 -81.2
Small Pickup -32.6 -20.4 -53.0 -32.3 -19.7 -52.0
Large Pickup -122.4 -39.2 -161.6 -122.9 -38.9 -161.8
Minivan -5.6 -10.0 -15.6 2.0 -3.8 -1.8

Total -18.0 5.9 -12.1 -9.3 17.8 8.5
Standard error (3.8) (4.3)
Cost of risk 
change (millions)2 -84 59

No driver effects Full model

One car Two car Total One car Two car Total

Compact 45.6 31.4 77.0 38.0 24.4 62.4
Midsize 15.9 8.5 24.4 15.0 6.9 21.9
Fullsize 8.9 6.7 15.6 7.3 5.0 12.3
Small Luxury -3.4 -1.9 -5.3 -3.9 -2.3 -6.2
Large Luxury -0.5 -1.2 -1.7 -0.8 -1.5 -2.2

Small SUV -31.6 -12.5 -44.1 -31.3 -12.7 -44.0
Large SUV -32.6 -8.7 -41.3 -32.6 -8.9 -41.5
Small Pickup 1.8 0.3 2.1 0.9 -0.4 0.5
Large Pickup -4.1 -2.0 -6.2 -10.0 -4.0 -14.0
Minivan 4.1 2.2 6.4 10.3 6.8 17.1

Total 4.2 22.7 26.9 -7.1 13.4 6.3
Standard error (1.3) (1.5)
Cost of risk 
change (millions)2 185 43
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Table 10: Peltzman Effects and the Influence of a Driver-Vehicle Specific Residual1 

 

 
 

1 The values in the right two columns allow driving behavior to improve as drivers switch 
to smaller vehicle classes.  They are upper limits in the sense that all of the correlation 
between estimated driver behavior and size is attributed to the vehicle (e.g. large vehicles 
are driven more aggressively or are more difficult to control).  As expected, all safety 
outcomes from CAFE improve in these columns.  The sign of the effect on the current 
CAFE standard is preserved and the improvement offered by a unified standard is robust.  
Standard errors in parentheses are calculated as above. 

 
 
 
 
 

Table 11:  Alternative Identification Strategy and Simulation Elasticities1 

 

 
 

1 The alternative identification strategy removes the need for crash test data.  The standard 
errors are calculated as above and are much higher given the additional cross-equation 
restrictions.  The final column includes results from an alternative source for substitution 
elasticities in the choice model. 

 
  

No driver 
effects

Full model 
(central)

Peltzman 
effect     

(upper limit)

Peltzman within 
census divisions 

(upper limit)

Current CAFE 
within fleet

-135.02             
(6.15)

149.47             
(9.36)

69.80             
(9.36)

101.72             
(9.36)

Unified standard -12.14             
(3.81)

8.50             
(4.35)

-57.00             
(4.35)

-64.43             
(4.35)

Footprint-based 
standard

26.88             
(1.28)

6.27             
(1.52)

-18.94             
(1.52)

-4.49             
(1.52)

Improvement 
offered by 
unified standard 

-122.9 141.0 126.8 166.1

No driver 
effects

Full model 
(central)

Alternative 
identification

Alternative 
elasticities

Current CAFE 
within fleet

-135.02             
(6.15)

149.47             
(9.36)

222.00             
(53.97)

156.15             
(10.38)

Unified standard -12.14             
(3.81)

8.50             
(4.35)

7.31             
(21.11)

32.97             
(2.85)

Footprint-based 
standard

26.88             
(1.28)

6.27             
(1.52)

-47.55             
(5.72)

8.18             
(1.27)
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Table 12:  Alternative Demand Elasticities by Class1 

 

 

 
 

1 Elasticities from Kleit (2004) aggregated to match the ten class definitions in my model.  In order 
to isolate the effects of fleet composition I also proportionally adjust the cross-price elasticities 
such that fleet size is exactly maintained. 

 
 
 
 
 
 
 
 

Table 13:  Additional Robustness Checks 
 

 

 
 
 

1 Changes in overall safety through time (perhaps most importantly the airbag requirement 
in 1998) do not affect the relative safety performance of classes enough to alter my 
conclusions on fuel economy rules.  The potential frailty of older drivers and selection of 
vehicle type by weather conditions similarly have very small impacts on the results.  

Compact Midsize Fullsize
Small 

Luxury
Large 

Luxury
Small 
SUV

Large 
SUV

Small 
Pickup

Large 
Pickup Minivan

Compact -3.12 0.94 0.06 0.10 0.00 0.10 0.01 0.12 0.03 0.03
Midsize 1.64 -3.92 1.10 0.15 0.06 0.39 0.07 0.06 0.02 0.19
Fullsize 0.65 4.28 -5.00 0.15 0.75 0.20 0.09 0.03 0.07 0.19
Small Luxury 1.32 0.94 0.32 -2.50 0.03 0.49 0.12 0.31 0.25 0.06
Large Luxury 0.11 0.90 1.06 0.05 -1.93 0.49 0.23 0.00 0.03 0.25
Small SUV 0.52 0.62 0.10 0.15 0.03 -4.05 0.96 0.31 0.44 0.38
Large SUV 0.24 0.45 0.14 0.09 0.05 3.73 -2.29 0.16 0.40 0.93
Small Pickup 0.39 0.22 0.00 0.05 0.00 0.49 0.08 -3.32 0.88 0.03
Large Pickup 0.15 0.16 0.02 0.05 0.00 0.30 0.16 0.81 -1.72 0.06
Minivan 0.19 0.38 0.06 0.00 0.03 0.30 0.46 0.03 0.06 -2.54

No driver 
effects

Full model 
(central)

1998 and 
newer

Drivers 
under 55

Clear 
weather

Current CAFE 
within fleet

-135.02 149.47 142.15 132.82 148.52

Unified standard -12.14 8.50 6.27 -2.47 8.26

Footprint-based 
standard

26.88 6.27 0.56 3.36 6.99

Fraction of accidents 1.00 0.52 0.77 0.90
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Figure 1:  Estimates of α i in Full Model1 
 
 

 
 
 

1 Values are taken from the first row of Table 4 and bars indicate 95% confidence 
intervals.  The average driving safety is normalized to 1 and larger values 
indicate more risk. 
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Figure 2:  β ij in the Restricted and Full Models1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 The 100 βij parameters from Tables 3 and 4 are plotted relative to one another.  The 45-degree 
line represents no change across specifications and markers for large pickups and minivans (for 
parameters in rows i) are shown to highlight the pattern of changes.  The miles-driven weighted 
change on both sides of 45 degrees is equal, reflecting the fact that predicted risk in the two 
models matches the data overall. 
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Appendix A:  Negative Binomial Specification 
 

Begin by stacking the model in (5.3) and (5.4) to write the estimation as a single 

equation.  Combining the count data and dividing out the HIC score, define the vector:   

 

With 10 classes i and j, 18 bins s, and 156 weeks t, q contains the 308,880 rows of count 

data.  Individual observations will be ql.  Similarly, write the parameters as a single vector 

(taking logs for convenience in the expressions below): 

 

The right hand side of the model will contain only indicator variables, determining 

the set of observations to which individual δ, λ, and β parameters apply.  For example, an 

observation of the count of multi-car accidents between classes 2 and 3 occurring in 

location bin 5 should receive indicators turning on δ2,5, δ3,5, and β2,3.  The corresponding 

vector of indicators for each observation l is: 

 

where dis has i times s elements, set to 1 for the vehicle(s) and bin involved and zero 

otherwise.  Similarly, ds is a vector containing indicators for bin and dij a vector containing 

indicators for all accident combinations.  Isingle is an indicator for single car accidents and 

Imulti an indicator for multi-car accidents.  These allow λs to enter the first set of counts in q 

(corresponding to equation [5.3]) and βij to enter the second set (corresponding to [5.4]).   

 In the combined notation the Poisson version of the model becomes: 

 (A.1) 

q ≡
Yist

xi
Zijst

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

γ ≡ ln(δ is ) ln(λs ) ln(βij )⎡
⎣

⎤
⎦

ml ≡ dis ds ⋅Isingle dij ⋅Imulti⎡
⎣

⎤
⎦

E(ql |ml ) = exp(ml 'γ )
with  Var(ql |ml ) = exp(ml 'γ )
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When applying the definition of the indicators in ml and taking logs (A.1) is equivalent to 

(5.3) and (5.4) in the main text. 

 We now wish to generalize by adding an error term to the observed counts in q: 

 (A.2) 

If we take  to be distributed gamma with mean 1, variance θ, and 

independent of m, then, following Cameron and Trivedi (1986), ql will be distributed 

negative binomial with the following properties: 

 (A.3) 

The assumptions on ε provide an expected value of ql that remains the same as above.  The 

variance, however, is now allowed to exceed that of the Poisson model as the variance of 

the additional error in (A.2) grows away from 0.  The model reduces back to Poisson as θ 

goes to 0. 

The variation allowed in the εl error would include, for example, randomness in 

weather or driving patterns across time that is independent of the variables in ml.  The 

requirement of independence with m is softened by noting that the δis and λs fixed effects 

already flexibly capture much of the unobserved variation we would expect at the bin-class 

level.  Unobserved factors in the error that violate the cross-equation restrictions, for 

example a temporary traffic pattern that makes accidents between two particular classes 

more frequent but has no influence on other pairs or single car accidents, could bias the 

estimates. 

The bias from violations on the error assumptions, though, may be quite limited 

considering that the influence of overdispersion more generally appears very small.  Table 

A1 compares the estimates of αi and the results of the main policy simulations using the 

estimates from the Poisson (left column) and the negative binomial (right column).  The 

estimates are nearly indistinguishable and the standard errors increase only slightly, a 

function of the small magnitude of the estimated θ.  Nevertheless, the estimate for θ is 

E(ql |ml ,ε l ) = exp(ml 'γ + ε l )

exp(ε l )

E(ql |ml ) = exp(ml 'γ )
Var(ql |ml ) = exp(ml 'γ ) ⋅ 1+θ exp(ml 'γ )( )
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statistically significant and the more restrictive Poisson is rejected by a likelihood ratio 

test, so I have reported results from the negative binomial version throughout. 
 
 
Appendix B:  Alternative Definitions of the Bin Structure 

 

As discussed in Section 5, the bins in the model relax the strictness of the cross-

equation restrictions.  Unobserved factors that vary across bin, but not classes within that 

bin, are allowed to enter the single- and multi- car equations differently.  More flexible 

bins along this dimension should improve the model, though since the number of bins also 

rapidly increases the computation time required I must consider the influence of different 

possibilities separately. 

Table A2 first reproduces the model without driver effects.  Six possibilities for the 

bin structure in the full model follow, with the first four building up to the central case.  

The next row refines the central case bins even further, subdividing each into three road 

types (interstate, rural highway, and local roads) for a total of 54 bins.  Finally, a version 

with bins by U.S. state is shown. 

The results in the first column, applying to the usual CAFE standard, are largely 

robust.  The second column, showing the unified standard, reveals somewhat larger 

differences: the no bins and state-level bins rows show modest improvements in safety.  

However, when we instead bin the data on factors more directly related to the relative 

frequencies of single- and multi-car accidents, these improvements become statistically 

indistinguishable from zero or even a slight deterioration of safety.  Time-of-day and urban 

density will have a natural influence on the divide between single- and multi- car accidents 

since they change the density of cars on the road.  Income has a substantial effect as well, 

perhaps proxying for commuting patterns or local road quality, making these the three I 

choose for the central case.  The two key qualitative findings, understatement of fatalities 

in the naive model and the dramatic improvements available under a unified standard, 

remain robust to all of these bin structures. 
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Appendix C:  Accident Fault Data 
 

 Data on accident fault can provide additional insight on the composition of factors 

within the αi parameters, though the analysis here remains only suggestive given the 

degree of noise and potential biases in fault assignment.  The table below suggests that 

behaviors for which drivers are faulted, like traffic law violations or distraction and 

inattention, are a relatively small component of α.  Factors related to geography and the 

timing of trips may therefore explain a greater portion of the risk, helping to further reduce 

concern of Peltzman-type effects influencing the simulation. 

 I consider fatal two-car accidents where the vehicles involved are from unmatched 

classes, taking a measure of fault from the FARS data.  I assign fault to a vehicle if the 

driver is either charged with a traffic violation in conjunction with the accident or if the 

FARS notes a "driver contributing factor" (for example, sleep, drug use, or distractions).  I 

remove accidents where fault appears on both sides and also exclude counts where both 

vehicles are of the same class, since these counts only reflect the safety of the class itself.  

Table A3 counts the number of times fault was with the listed class and the number of 

times fault was with the opposing class.  The ratio, removing the overall tendency of 

individual classes to appear in fatal accidents, provides a measure of differences in fault: 

unity indicates that the listed class is exactly as likely to be faulted as any opposing 

vehicle. 

 A key result from this exercise is that fault appears more evenly distributed than αi: 

this suggests that location, time, and other factors not associated with fault are also 

important determinants.  Some classes, like luxury cars in Table A3, appear to receive a lot 

of blame in the accidents they end up in but in fact appear in relatively few fatal accidents 

overall (as seen in α).  In these cases, effects other than fault are then the dominant 

determinants of α.  To the extent these other factors (for example geographical location) 

are also more likely to remain fixed when a driver switches cars this adds a piece of 

suggestive evidence in support of the central case simulation assumptions. 
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Appendix D:  Alternative Demand Elasticities 
 

The demand elasticities I use in the central case simulations come originally from a 

Bayesian model of vehicle choice, making it possible to draw a variety of alternatives from 

the estimated posterior densities to further explore the sensitivity of my results.  Table A4 

displays the minimum and maximum change in fatalities for each policy simulation, taken 

over 50 different draws on the elasticities.  The extremes remain quite close to the central 

case, likely reflecting the large dataset and relatively high precision in the source paper.   

However, structural uncertainty in the elasticity estimates likely remains an 

important issue, attested to by the wide variety of estimates produced in the literature.  This 

highlights the importance of the sensitivity analysis across different sources for the 

elasticity parameters, shown in Tables 5 and 12 of the main text. 
 

 
 
Appendix E:  Vehicle Class Aggregates 
 

Table A5 below provides details on the mean and standard deviation of the fuel 

economy and weight of each class.  Fuel economies across classes range from 19 to 30 

MPG, capturing much of the variation among popular vehicles; the aggregation, however, 

means I do not capture the extremes as well.  Hybrid compacts on the high end, for 

example, or luxury SUV’s on the low end will be missed, though demand for these 

vehicles is also relatively inelastic meaning they play less of a role in the compositional 

changes expected under regulation. 

The largest variation within class for fuel economy comes in compacts, where a 

growing fraction of hybrids and ultra-compacts enter alongside more typical compacts like 

the Ford Focus or Honda Civic.  The largest variation in weight is in the large SUV class, 

likely coming from the presence of so-called “premium” large SUV’s that feature weights 

near the maximum permissible without a commercial driving license. 
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Table A1: Comparison of Poisson and Negative Binomial Estimation Results 

 
 

 
 

  

Poisson

Negative,

binomial

Estimates(of(αi

Compact
1.137,,,,,,,,,,,,,

(0.0641)

1.136,,,,,,,,,,,,,

(0.0644)

Midsize
0.983,,,,,,,,,,,,,

(0.0572)

0.983,,,,,,,,,,,,,

(0.0576)

Fullsize
1.254,,,,,,,,,,,,,

(0.0769)

1.254,,,,,,,,,,,,,

(0.0774)

Small,Luxury
1.193,,,,,,,,,,,,,

(0.0749)

1.193,,,,,,,,,,,,,

(0.0754)

Large,Luxury
1.054,,,,,,,,,,,,,

(0.0669)

1.053,,,,,,,,,,,,,

(0.0673)

Small,SUV
0.653,,,,,,,,,,,,,

(0.0384)

0.654,,,,,,,,,,,,,

(0.0387)

Large,SUV
1.062,,,,,,,,,,,,,

(0.0626)

1.063,,,,,,,,,,,,,

(0.0631)

Small,Pickup
1.094,,,,,,,,,,,,,

(0.0652)

1.094,,,,,,,,,,,,,

(0.0657)

Large,Pickup
1.445,,,,,,,,,,,,,

(0.0838)

1.446,,,,,,,,,,,,,

(0.0844)

Minivan
0.389,,,,,,,,,,,,,

(0.0245)

0.389,,,,,,,,,,,,,

(0.0247)

Central(policy(results

Current,CAFE,

within,fleet

149.06,,,,,,,,,,,,,

(9.27)

149.47,,,,,,,,,,,,,

(9.36)

Unified,standard
8.19,,,,,,,,,,,,,

(4.29)

8.50,,,,,,,,,,,,,

(4.35)

FootprintRbased,

standard

6.22,,,,,,,,,,,,,

(1.50)

6.27,,,,,,,,,,,,,

(1.52)
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Table A2:  Effects of Alternative Bin Structures 
 
 

 
 
  

Current CAFE 
within fleet

Unified 
standard

Footprint-based 
standard

 
 

-135.02 -12.14 26.88

 
 

Bins:

None 142.17 -25.04 3.77

Time-of-day  136.79 -14.58 4.13

Time-of-day, income  143.22 -4.94 4.99

Time-of-day, income, 
urban (central case)

 149.47 8.5 6.27

Time-of-day, income, 
urban, road type

 136.65 10.79 10.43

Fifty states  125.34 -29.86 2.67

No driver effects

Full model
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Table A3:  Fault by Class1 

 
 

 
 

1 Fault is assigned here if the FARS data either indicate a moving 
violation charged or include a driver contributing factor. 

  

All#accidents#
involving Own#fault Others#fault Ratio

Compact 4262 3404 1.25
Midsize 3748 3039 1.23
Fullsize 1208 1218 0.99
Small#Luxury 660 453 1.46
Large#Luxury 702 602 1.17
Small#SUV 1673 1959 0.85
Large#SUV 1540 2091 0.74
Small#Pickup 1187 1218 0.97
Large#Pickup 2654 3344 0.79
Minivan 817 1123 0.73
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Table A4:  Simulation Results over a Sample of Varying Demand Elasticities1  
 
 

 
 
 

1 The minimum and maximum simulation outcomes are shown over 50 draws from the posterior 
density of the parameters controlling demand elasticity. 

  

No#driver#effects Full#model
Min Central#case Max Min Central#case Max

Current#CAFE#
within#fleet

:147.2 :135.0 :127.1 144.2 149.5 156.6

Unified#
standard

:21.0 :12.1 :1.9 5.6 8.5 11.8

Footprint:
based#standard

18.3 26.9 31.8 5.3 6.3 8.1
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Table A5:  Fuel Economy and Weight by Class 
 
 

 
 
 
 

 

Fuel Economy (MPG) Weight (pounds)

Class Mean
Standard,
deviation Mean

Standard,
deviation

Compact 30.2 3.50 2680 415.5
Midsize 27.0 2.39 3150 312.6
Fullsize 25.4 2.05 3598 345.3
Small,Luxury 26.0 2.95 3332 472.4
Large,Luxury 23.8 1.42 3801 285.9

Small,SUV 24.1 3.28 3506 465.3
Large,SUV 19.0 2.53 4652 489.9
Small,Pickup 22.5 2.85 3236 325.2
Large,Pickup 19.1 2.49 4718 435.6
Minivan 23.4 1.46 3688 301.8


